Programming Languages:
Application and Interpretation

Shriram Krishnamurthi
Brown University

Version 3.2.2, 2023-02-26 , © Shriram Krishnamurthi, CC-BY-NC-SA 4.0.

For up-to-date information about this book, please visit plai.org.
This book is provided free of cost. Please report any violations.
If you make a derivative version, please include the above information.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.plai.org/

Table of Contents

Table of Contents

Preface
Why Study Programming Languages?
The Target Audience
Why a Third Edition
Structuring Our Study
Equipment for Learning
The Language(s) of the Book

Acknowledgments
Readers
Everyone Else

esece Learning SMoOL eeeee
Teach Yourself SMoL
eeoee Evaluation eeeee

Evaluation on Paper
Evaluators
Terminology
Simulating an Interpreter by Hand
Substitution

Representing Arithmetic
Representing Programs
Abstract Syntax
Representing Abstract Syntax

Evaluating Arithmetic
Defining the Evaluator
Testing the Evaluator
Some Subtler Tests
Conclusion

Parsing: From Source to ASTs
The Problem
S-Expressions
Primus Inter Parsers

Evaluating Conditionals

[y

O 00 003 3

10

11
11
11

13
14
15

16
16
17
17
20

21
21
22

24

27
27
28
29
30

31
31
32
33

37

Extending the AST

Extending the Calculator

The Design Space of Conditionals
Using Truthy-Falsy Values
Implementing Conditionals
Adding Booleans

The Value Datatype

Updating the Evaluator

Evaluating Local Binding

A Syntax for Local Binding
The Meaning of Local Binding
Static Scoping

An Evaluator for Local Binding
Caching Substitution

Evaluating Functions

Functions in the Language
Extending the Representation
Evaluating Functions
Extending Values

Stepping Back

Extending Tests

Return to Static Scope

A Subtle Test

esece Syntactic Sugar eeeee

How SMoL. Becomes Large

Redundancy in Languages
Desugaring

Macros By Example

A New Conditional

Local Binding

Binding More Locals
Multi-Armed Conditionals

More on Macros

A Definitional Convenience
Name Capture

A Truthy/Falsy Idiom

A Macro Definition Peril
Back to Hygiene
Generalizing Macros

37
37
38
39
40
41
42
43

46
46
47
51
53
54

57
57
57

59
60

62
64
65
67

69

70
70
71
72
72
74
76
76

78
78
79
8o
81
81
82

Xy Objects eccee 84

A Standard Model of Objects 85
What is an Object? 85
The “Object” Pattern 87
Constructors 87
The “Class” Pattern 88
State 88
Private Members 89
A Refined “Class” Pattern 89
Static Members 90
A Re-Refined “Class” Pattern 91
Objects with Self Reference 92

Self-Reference Using Mutation 92
Self-Reference Without Mutation 93
Dynamic Dispatch 94

What Else do Objects Have? 96
Member Name Design Space 96
What (Goes In) Else? 97
A Java Excursion 98
Extending Classes 100
Extending Prototypes 103
Multiple Inheritance 103
Class Extensions: Mixins and Traits 104

ecooe Types ey 107

Introduction to Types 108
A Standard Model of Types 108
A Concise Notation 112

Growing Types: Division, Conditionals 114
Handling Division 114
Another Perspective on Types 114
From Axioms and Rules to Judgments 115
Judgments and Errors 116
Typing Conditionals 117
Where Types Diverge from Evaluation 120

Growing Types: Typing Functions 122
Typing Function Applications 122
Typing Function Definitions 124
Typing Variables 124

Back to Typing Function Definitions 125

More Divergence Between Types and Evaluation 126
Assume-Guarantee Reasoning 127
Recursion and Infinite Loops 128
Typing Recursion 129
Safety and Soundness 132
Revisiting the Basic Calculator 132
Making Memory Explicit (Unsafely) 133
Recovering Safety 138
What Price Safety? 140
Soundness 141
Generic Printing 142
The Representation of Numbers 143
Type Inference 144
Unannotated Programs and Types 144
Imagining a Solution 145
Unique Variable Names 146
More Informal Examples 146
Algorithmic Details 147
Algebraic Datatypes 149
Generated Bindings 149
Static Type Safety 150
Pattern-Matching and Type-Checking 151
Algebraic Datatypes and Space 152
Union Types and Retrofitted Types 153
You Get a Type! And You Get a Type! And You Get a Type! 153
Union Types 154
If-Splitting 156
Introducing Union Types 157
How Many Unions? 158
Union Types and Space 158
If-Splitting with Control Flow 159
If-Splitting with Control Flow and State 160
The Price of Retrofitting 162
Types and Tags 162
Nominal Types, Structural Types, and Subtyping 164
Algebraic Datatypes Encoded With Nominal Types 164
Nominal Types 165
Structural Types 166

Nominal Subtyping
Subtyping

Gradual Typing
From Scripts to Programs
Micro Versus Macro
Typed Racket at Work

eseee Non-Standard Models eeeee

Relations
A Language Genealogy
Encoding Type Rules

Generators
A Canonical Example
Translating to SMoL
A Richer Example

Laziness
Evaluation Strategies
Why Lazy Evaluation
Strictness Points
Evaluating Without Substitution
Laziness Via Closures: Beyond Numbers
Tracing Laziness
Laziness and Side-Effects
Caching Results
Space Consumption
Laziness in Eagerness

Control on the Web
Server-Side Programming
Recording Contexts
Simulating in the Stacker
Client-Side Termination
Abstracting the Problem
Using Closures
Using Racket
Yielding on a Web Server
Interaction with State
Web Interactions
Returning to the Counters
Mapping between Web and Programming Language Features
Readings

167
168

170
170
171
171

176

177
177
179

184
184
185
189

192
192
193
194
196
197
198
199

200
201
201

202
202
202
203
204
205
206
208
209

211
212
213
214
214

Reactivity 216

GUIs through Callbacks 216
Reactivity 218
How Evaluation Works 220
Dataflow Graphs 220
Rewriting Application 221
Non-Linear Graphs 223
Avoiding Glitches 224
Other Time-Varying Values 225
Even More Time-Varying Values 226
Returning to Our Timer 226
Elapsed Time Without Resetting 226
Adding Resets 227
eceece What’s Next? eeeee 230

Preface

Why Study Programming Languages?

It is always healthy to begin a course of study by asking why we should engage in it. So let us list
a few reasons to justify this one:

e Programming languages are some of the most beautiful and powerful objects invented by
human beings.

e They let us—indeed, force us to—capture our thoughts precisely, and in return command
machines of immense power to do our bidding.
To a programmer, they are the ultimate human-computer interface.
They are industrially important: so important that major companies create new
languages or co-opt existing ones to establish or expand their market share.

e They embody a new form of knowledge: what Structure and Interpretation of Computer
Programs called a “procedural epistemology”.

e They enable us to prove powerful statements about the means and limits of our
expression. How many other languages let us do either?

How many more reasons does one need?
The Target Audience

Starting with the first edition, this book’s target has been “the other 90%”. That is, I conjecture
that roughly 10% of students in a programming languages class are like the educator: they are
deeply excited about and motivated to learn the subject, identify with it personally, and may
want to continue to study it further. These are wonderful students, and many of them will go on
to become the next generation of educators. There are several terrific books that are
designed—or at least, work best—for this kind of student.

But most of them—say 90%—may not have this deep personal identification. Instead, they want
to learn the subject enough to become better computer scientists. What do they need to learn,
and how do they need to learn it? They are the target audience for this book. On the one hand,
the book tries to connect to many programming tasks. At the same time, it’s too easy to pander
to such an audience. The book tries to balance these connections with a focus on principles that
will stand the learner in good stead for a long time.

Of course, I believe the 10% will learn something useful from this book, too. If nothing else, they
may learn a different perspective on the subject, and maybe also develop some empathy for
learners not like themselves. If nothing else, well over a dozen students who used earlier editions
of this book successfully completed PhDs in programming languages, and several are themselves
professors now. So, at least, the book has not harmed them. I can live with those odds.

https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/index.html
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/index.html

I have also written this book with working programmers in mind. Many of them may have not
had a formal computer science education, or at least one that included a proper introduction to
programming languages. At some point, like that 90% of students, some of them become curious
about the media they use. I want this book to speak to them, gently drawing them away from the
hustle and bustle of daily programming into a space of reflection and thought.

Why a Third Edition

Over the past several years, a significant part of my research examines how students understand
programming languages at many different levels. What I have learned has convinced me that we
need a new approach to teaching this material. This edition is a first iteration to that end. (It was
also a chance to rewrite the prose in my current “voice”, which has evolved a lot over two
decades. Virtually no text is in common with the first edition, and only some with the second.)

We also live in a world of unprecedented linguistic diversity and novelty. It seems like every few
weeks I learn about someone trying some new linguistic experiment. The wide availability of
robust and interesting run-time systems—as diverse as Erlang’s, the Java Virtual Machine, the
browser’s JavaScript, Racket’s, and more—makes it easy to get a working prototype “with
batteries” and focus on novelty. This affects both people trying to learn new languages and those
trying to build them.

Relatedly, the first edition took a very “classical” look at programming languages, shaped by my
own formal training in the subject. The second edition started to migrate from it, but not
entirely. The third edition has mostly broken free of those constraints, reflecting more of the
current linguistic landscape. There are not many books that cover topics like “scripting” and
“gradual typing” without reducing them to slogans and fluff; this book tries to cover them in
more rigorous ways.

But all this diversity brings up the important challenge of how to approach it. In other
disciplines, we approach new objects by decomposing them into familiar constituent elements.
Their commonalities provide an anchor, and a point of departure for what makes them novel.
What are those elements for programming languages? Pedagogic tradition holds that
“paradigms” are one such organizational medium, but I find them a moribund legacy of a period
when computing wanted to be viewed as a “science” and felt the best way to do this was to put
things in labeled boxes. But programming languages are artificial, not natural, entities, and
nothing prevents designers from freely mixing between the boxes—as indeed many have. When
virtually everything is “multiparadigm”, how can we make sense out of the world?

Structuring Our Study

https://cs.brown.edu/~sk/Publications/Papers/Published/

As I have argued in greater length elsewhere, it is more meaningful to think of programming
languages as aggregates of features. The features are the building blocks. Of course, once
combined, languages are more like compounds than like mixtures: the features interact in ways
that may not be easy to predict. Understanding both the features and their compositions is then
a valuable way to approach a language.

The book revolves around a central idea, SMoL, the Standard Model of Languages. This is the
embodiment of the computational core of many of our widely-used programming languages,
from C# and Java to JavaScript, Lua, Python, and Ruby to OCaml and Racket. The astute reader
will notice that this commonality pays no respect to “paradigms”. Rather, all these languages
(and many others), to a large extent, have a common computational core: safe runtime systems,
automated memory management, eager evaluation, first-class lexically-scoped functions,
first-order mutable variables, and first-class mutable structures. Contemporary programming
demands a deep understanding of these. For instance, I believe you cannot make sense of
concurrency with mutation, static members, or ownership, without understanding SMoL.

However, because languages are artificial and programming is an almost infinitely malleable
material, even “standard” features have historically seen variation. Therefore, while we progress
across features, we also want to study variation within them. We do this by using the mystery
language approach: with a fixed syntax, we explore the different ways the same feature can
behave. This hopes to build on the cognitive theory of contrasting cases to improve learning.

What goes in SMoL is, of course, a judgment call: when a feature isn’t present across a large
number of diverse languages (like static types), or shows too much variation between languages
(like objects), I argue that it’s no longer part of the standard model. But it is not a value
judgment: in this book we explore SMoL in some depth, then turn our attention to several
non-“standard” features that are not only important but also beautiful and fascinating.

Turning to implementation, the book provides another pillar: SImPI, the Standard
Implementation Plan. This is the idea that programming languages are usefully thought of in
terms of an abstract syntax tree; this tree is represented well by an algebraic datatype; and a
program that processes this tree is a recursive function that is largely guided by the structure of
the type. This level of description encompasses both the standard media for evaluation,
interpreters and compilers. It also captures the essence of type-checkers, type inference, static
analysis, and more. Thus, students should gain facility with this structure for when they want to
implement their own language experiments.

Equipment for Learning

While over time all the material might be incorporated into this book, for now, the book is part
of a broader learning ecosystem, which is the course CSCI 1730 at Brown University. All the
materials are available from the following site:

https://cs.brown.edu/courses/csci1730/2022/

https://cs.brown.edu/~sk/Publications/Papers/Published/sk-teach-pl-post-linnaean/
https://cs.brown.edu/~sk/Publications/Papers/Published/pkf-teach-pl-exp-adv-think/
https://cs.brown.edu/~sk/Publications/Papers/Published/pkf-teach-pl-exp-adv-think/
https://www.cultofpedagogy.com/contrasting-cases/
https://cs.brown.edu/courses/csci1730/2022/

The course’s work is divided into four “threads”. One thread, SMoL, uses an automated tutor to
teach students SMoL. A second thread, ML, makes students work through mystery languages.
The third is the Implementation thread. The fourth is Analysis, which asks students to relate
material they are learning in the class to real-world language contexts. I especially encourage
educators to make use of the Analysis thread assignments in their classes.

The book also makes extensive use of the Stacker notional machine. Readers will find it useful to
run SMoL programs in the Stacker and study how they behave.

The Language(s) of the Book

This book makes heavy use of Racket. However, that is too simplistic. Racket’s power comes
from its ability to define new languages: this article and this brief video discuss that in more
detail. Indeed, some programs in this book are written in the Racket programming language
(#lang racket), but many are in a language ideally designed for this book (#lang plait).In
addition, other parts define their own languages: there are multiple SMoL languages and well
over a dozen mystery languages. Thus, while the learner must demonstrate some forbearance for
parenthetical syntax, in return they will be richly rewarded with learning experiences.

The existence of #1ang, in some ways, drove this book’s redesign. I had some hand in that
feature’s design, which made me acutely self-conscious: materials intended to be for a broad
audience shouldn’t be about work too close to my heart. That was one of the reasons that, while
the first edition used a predecessor of Racket, the second edition did not. In the process,
however, I realized that I was depriving my students of numerous learning opportunities: after
all, what better medium for the study of languages than a language designed for designing
languages? For instance, the first version of the mystery languages were ad hoc and confusing;
reimplementing them as a collection of Racket #1angs made them far simpler and clearer (and
also open them up to be an object of direct study themselves). Thus, this edition doubles down
(and then some) on the use of Racket. Getting it right can be tricky (e.g., avoiding mode
confusion) and may take a few iterations, but it’s well worth the effort.

10

https://github.com/LuKC1024/stacker
https://racket-lang.org/
https://cs.brown.edu/~sk/Publications/Papers/Published/fffkbmt-programmable-prog-lang/
https://youtu.be/R_1TnfCuxK8
https://cs.brown.edu/~sk/Publications/Papers/Published/cffk-macros-to-dsls/

Acknowledgments

Readers

For this edition, I thank the students and other readers who have pointed out errors and
suggested improvements:

Alex Ding, Ashley Chung, Calder Ruhl Hansen, Charles Gagnon, David Fryd, David
Young, garare992 @ GitHub, Geoffrey J. Teale, Jack Zeng, Jason Eveleth, Kevin
Gibbons, Kristoffer Balintona, Liam Bai, Michael Fishman, Nicholas Vadasz, Nolan
Serbent, Paul Biberstein, Paul Carduner, Peter Li, Robert Wang, Shihang Li, Sidharth
Anand, Sreshtaa Rajesh, Suzanne Rivoire, Tomas Dougan, Zack Amiton, Zack Eisbach

A few have made numerous or especially good suggestions:

Benjamin Lee, Ian Arawjo, Neil Ramaswamy, Qiuhong Wei, Tianren Dong, Yongming
Han, Zack Cheng

Finally, a few deserve extra special praise for their attention to detail and staying power:

Chen Li, Ezra Marks, Futao Wei
Everyone Else

This edition builds on two previous editions. I remain deeply grateful to all the people who
helped make those editions happen.

My group’s PhD students, especially Jack Wrenn, have tolerated years of my complaining about
my course. Amidst their eye-rolling they heard me out, batted away my worst ideas, and fleshed
out my better ones. I am deeply fortunate to be able to work with them.

John Clements’s sabbatical at Brown was a huge fillip to my rethinking the basics, and our
conversations reminded me how much I have missed his company.

Kuang-Chen Lu has believed in this project from the start, and built and maintained numerous
of the materials that make it possible. He has not only collaborated on but actively leads many of
the materials that power or augment this book. His dissertation research will likely lead to
significant improvements in how we teach programming languages.

Matthew Flatt’s fingerprints are all over this book. I especially thank him for the Racket

ecosystem and the #1ang concept, which also drove the redesign of this book, and for the plait
language especially, which is central to much of this book’s code.

11

https://cs.brown.edu/~sk/Publications/Books/ProgLangs/2007-04-26/
https://cs.brown.edu/courses/cs173/2012/book/

Most of this book’s ideas and composition were formed on the East Bay Bike Path. To the people
who made it happen and keep it alive, many thanks, and may the winds always be at your back
(which they often can be, if you ride south and then back north between 2pm and 4pm).

Finally, this book wouldn’t have migrated from head to page without the love and support of

Kathi and Tara, who also tolerated years of my complaining about my course and provided their
own eye-rolling support. They are my rocks.

12

eecee [earning SMoOL eeeee

We begin by learning the Standard Model of Languages, which undergirds most of our
subsequent study.

13

Teach Yourself SMoL

This work is centered around your understanding of SMoL. However, to avoid a passive reading
experience, Kuang-Chen Lu has implemented a series of self-paced tutors to teach you SMoL.
The tutors both give you conceptual knowledge and teach you important terminology.
Importantly, they also have short, quick test questions to make sure you're on the right track.
These questions serve two ends. First, they force you to pay attention to the tutor: you can’t just
scroll through passively. Second, they are based on known misconceptions with this material.
Other learners made these mistakes, so you might too. Pay attention!

The tutors are still preliminary, but they have been used successfully already at Brown.

Because the tutorials currently do not support stopping, saving your work, and resuming, we
have broken the material down into a set of small (!) tutors, each covering one concept (and
sometimes even less). That way, you can do a tutor or three, take a break, and pick up later.

The tutors are here:

scope
order

more-scope
mutable variables

sequencing
vectorsi
vectors2
the heap
lambdai

. lambda2

11. lambdasg
12. local

N N N

=
o

Before you go on in this book, you should do the tutors!

14

https://lukc1024.github.io/
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=scope
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=order
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=more-scope
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=mut-vars
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=begin
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=vectors1
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=vectors2
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=heap
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=lambda1
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=lambda2
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=lambda3
https://script.google.com/a/brown.edu/macros/s/AKfycbz8R8BnTfQg9GErWjqt6RluW64tdgD1Bg4zCbQ6Y12_I85R3c3ihozuF3L8Ji4x-iMa/exec?tutorial=local

eeeee Evaluation eeeee

We begin by studying the process of building evaluators: programs that turn programs into
answers. We will follow SImPI, while exploring the core concepts in SMoL.

15

Evaluation on Paper

Evaluators

We're trying to implement a programming language: that is, to write an evaluator (i.e.,
something that “reduces programs to values”). It helps if we can first understand how evaluation
works on paper, before we start dealing with computer complexities.

Before we get into the details, it’s worth knowing that there are broadly speaking two kinds of
evaluators (as well as many combinations of them). They follow very different strategies:

e An interpreter consumes a program and simulates its execution. That is, the interpreter
does what we would expect “running the program” should do.

e A compiler consumes a program and produces another program. That output program
must then be further evaluated.

That is, an interpreter maps programs in some language L to values:
interpreter :: Program; — Value

We leave open exactly what a value is for now, informally understanding it to be an answer the
user would want to see—put differently, something that either cannot or does not need to be
further e-valu-ated. In contrast,

compiler :: Program; — Program;

That is, a compiler from L to T (we use T for “target”) consumes programs in L and produces
programs in T. We aren’t saying about how this T program must be evaluated. It may be
interpreted directly, or it may be further compiled. For instance, one can compile a Scheme
program to C. The C program may be interpreted directly, but it may very well be compiled to
assembly. However, we can’t keep compiling ad infinitum: at the bottom, there must be some
kind of interpreter (e.g., in the computer’s hardware) to provide answers.

Note that interpreters and compilers are themselves programs written in some language and
must themselves run. Naturally, this can lead to interesting ideas and problems.

In our study, we will focus primarily on interpreters, but also see a very lightweight form of
compilers. Interpreters are useful because:

1. A simple interpreter is often much easier to write than a compiler.
2. Debugging an interpreter can sometimes be much easier than debugging a compiler.

16

Therefore, they provide a useful “baseline” implementation technology that everyone can reach
for. Compilers can often take an entire course of study.

Terminology

It is common, on the Web, to read people speak of “interpreted languages” and “compiled
languages”. These terms are nonsense. That isn’t just a judgment; that’s a literal statement:
they do not make sense. Interpretation and compilation are techniques one uses to evaluate
programs. A language (almost) never specifies how it should be evaluated. As a result, each
implementer is free to choose whatever strategy they want.

Just as an example, C is often chosen as a canonically “compiled language”, while Scheme is
often presented as an “interpreted language”. However, there have been (a handful of)
interpreters for C; indeed, I used one when I first learned C. Likewise, there are numerous
compilers for Scheme; I used one when I first learned Scheme. Python has several interpreters
and compilers.

Furthermore, this seemingly hard distinction is frequently broken down in practice. Many
languages now have a “JIT”, which stands for just-in-time compilation. That is, the evaluator
starts out as an interpreter. If it finds itself interpreting the same code over and over, it compiles
it and uses the compiled code instead. When and how to do this is a complex and fascinating
topic, but it makes clear that the distinction is not a bright line.

Some people are confused by the interface that an implementation presents. Many languages
provide a read-eval-print loop (REPL), i.e., an interactive interface. It is often easier for an
interpreter to do this. However, many systems with such an interface accept code at a prompt,
compile it, run it, and present the answer back to the user; they mask all these steps. Therefore,
the interface is not an indicator of what kind of implementation you are seeing. It is perhaps
meaningful to refer to an implementation as “interactive” or “non-interactive”, but that is not a
reflection of the underlying language.

In short, please remember:

e (Most) Languages do not dictate implementations. Different platforms and other
considerations dictate what implementation to use.

e Implementations usually use one of two major strategies—interpretation and
compilation—but many are also hybrids of these.

e A specific implementation may offer an interactive or non-interactive interface.
However, this does not automatically reveal the underlying implementation strategy.

e Therefore, the terms “interpreted language” and “compiled language” are nonsensical.

Simulating an Interpreter by Hand

17

Since we have decided to write an interpreter, let’s start by understanding what we are trying to
get it to do, before we start to investigate how we will make it do it.

Let’s consider the following program:

(define (f x) (+ x 1))
(f 2)

What does it produce? We can all guess that it produces 3. Now suppose we're asked, why does
it produce 3? What might you say?

There’s a good chance you’ll say that it’s because x gets replaced with 2 in the body of f, then we
compute the body, and that’s the answer:

(f 2)
— (+ x 1) where x is replaced by 2
—>(+ 2 1)

— 3

These programs are written in Racket. You can put these programs into DrRacket in an early
student language level (like Beginning Student) and watch them run, step-by-step, using the
Step button in the menu bar:

Now let’s look at an extended version of the program:

;; T is the same as before
(define (g z)

(f (+ z 4)))
(g 5)

We can use the same process:

(g 5)
— (f (+ z 4)) where z is replaced by 5
— (f (+ 5 4))
— (f 9)
— (+ x 1) where x is replaced by 9
—>(+91)
— 10

18

Terminology: We call the variables in the function header the formal parameters and
the expressions in the function call the actual parameters. So in f, x is the formal
parameter, while 9 is an actual parameter. Some people also use argument in place of
parameter, but there’s no real difference between these terms.

Observe that we had a choice: we could have gone either

—(f (+ 5 4))
— (f 9)

or

— ('F (+ 5 4))
— (+ x 1) where x is replaced by (+ 5 4)

For now, both will produce the same answer, but this is actually a very consequential decision!
It is in fact one of the most profound choices in programming language design.

Terminology: The former choice is called eager evaluation: think of it as “eagerly”
reducing the actual parameter to a value before starting the function call. The latter
choice is called lazy evaluation: think of it as not rushing to perform the evaluation.

SMolL is eager. There are good reasons for this, which we will explore later [].
Okay, so back to evaluation. Let’s do one more step:

;; T is the same as before
;5 8 1s the same as before
(define (h z w)

(+ (g 2) (g w)))
(h 6 7)

Once again, we can look at the steps:

(h 6 7)
— (+ (g z) (g w)) where z is replaced by 6 and w is replaced by 7
—(+ (8 6) (87))
— (+ (f (+y 4)) (g 7)) wherey is replaced by 6
—(+ (f (+64)) (87))
—(+ (f 10) (g 7))
— (+ (+ x 1) (g 7)) where x is replaced by 10
—>(+ (+ 10 1) (g 7))
—>(+ 11 (g 7))
— (+ 11 (f (+ y 4))) wherey is replaced by 7

19

—(+ 11 (f (+ 7 4)))

— (+ 11 (f 11))

— (+ 11 (+ x 1)) where x is replaced by 11
— (+ 11 (+ 11 1))

— (+ 11 12)

— 23

Observe that we again had some choices:
e Do we replace both calls at once, or do one at a time?
e If the latter, do we do the left or the right one first?

Languages have to make decisions about these, too! Above, we’ve again done what SMoL does: it
finishes one call before starting the other, which makes SMoL sequential. Had we replaced both
calls at once, we’'d be exploring a parallel language. Conventionally, most languages choose a
left-to-right order, so that’s what we choose in SMoL.

Substitution

By the way, observe that you didn’t need to know any computer programming to answer these
questions. You did something similar in middle- and high-school algebra classes. You probably
learned the phrase substitution for “replaced with”. That’s the same process we’re following
here. And indeed, we can think of programming as a natural outgrowth of algebra, except with
much more interesting datatypes: not only numbers but also strings, images, lists, tables, vector
fields, videos, and more.

Okay, so this gives us a way to implement an evaluator:

Find a way to represent program source (e.g., a string or a tree).
Look for the next expression to evaluate.

Perform substitution (textually) to obtain a new program.
Continue evaluating until there’s nothing left but a value.

However, as you might have guessed, that’s not how most programming languages actually
work: in general it would be painfully slow. So we’ll have to find a better way!

20

Representing Arithmetic

Let’s start thinking about actually writing an evaluator. We’ll start with a simple arithmetic
language, and then build our way up from there. So our language will have

- numbers
- some arithmetic operations: in fact, just addition

and nothing more for now, so we can focus on the basics. Over time we’ll build this up.

Before we can think about the body of an evaluator, however, we need to figure out its type: in
particular, what will it consume?

Representing Programs

Well, what does an evaluator consume? It consumes programs. So we need to figure out how
to represent programs.

Of course, computers represent programs all the time. When we’re writing code, our text editor
holds the program source. Every executable on disk and in memory is a representation of a
program. When we visit a Web page, it sends down a JavaScript program. These are all
programs represented in the computer. But all these are a bit inconvenient for our needs, and
we’ll come up with a better representation in a moment.

Before thinking about representations, let’s think about what we’re representing. Here are some
example (arithmetic) programs:

1

(%]

-1
2.3
1+ 2
3+ 4

Already we have a question. How should we write our program? You can see where this is going:
should we be writing the sum of 1 and 2 as

1+ 2
or as

(+12)

21

+ 1 2
12 +

and so on. (For that matter, we can even ask what numeral system to use for basic numbers: e..g,
should we write 3 or III? You can program with the latter if you’d really like to.)

These are questions of what surface syntax to use. And they are very important! And
interesting! And important! People get really attached to some surface syntaxes over the other
(you may already be having some feelings about Racket’s parenthetical syntax...I certainly do).
You can even write that expression as

in Scratch and Snap!, and this syntax has been invaluable in getting young children to learn how
to program without all the vagaries of textual syntax.

Thus, these are great human-factors considerations. But for now these are a distraction in terms
of getting to understand the models underlying languages. Therefore, we need a way to
represent all these different programs in a way that ignores these distinctions.

Abstract Syntax

This leads us to the first part of SImPI (the Standard Implementation Plan): the creation of what
is called abstract syntax. In abstract syntax, we represent the essence of the input, ignoring the
superficial syntactic details. Thus, in abstract syntax, all of the above programs will have the
exact same representation.

An abstract syntax is an in-computer representation of programs. There are many kinds of data
we can use as a representation, so let’s think about the kinds of programs we might want to
represent. For simplicity, we’ll assume that our language has only numbers and addition; once
we can handle that, it’ll be easy to handle additional operations. Here are some sample (surface
syntax) programs:

2 +3
2 +3+4

R PR N
+ + + w
)

22

https://github.com/shriram/roman-numerals

In conventional arithmetic notation, of course, we have to worry about the order of operations
and what operations take precedence over what others. In abstract syntax, that’s another detail
we want to ignore; we'll instead assume that we are working internally with the equivalent of
fully-parenthesized expressions, where all these issues have been resolved. Thus, it’s as if the last
two expressions above were written as

(L +2)+3 or 1+ (2+ 3)
1+ ((2+3)+4)

Observe, then, that each side of the addition operation can be a full-blown expression in its own
right. This gives us a strong hint as to what kind of representation to use internally: a tree.
Indeed, it’s so common to use abstract syntax trees that the abbreviation, AST, is routinely used
without explanation; you can expect to see it in books, papers, blog posts, etc. on this topic.

You have quite possibly seen this idea before: it’s called sentence diagramming (read more on
Wikipedia). Here, for instance, is a diagram of the sentence “He studies linguistics at the
university”:

>

z—2— %

e
@

|
studies N P NP
N at Det N
| I
linguistics the N
|
university

By Xbarsti.jpg: Russky1802 derivative work: Maxdamantus - This file was derived from:
Xbarst1.jpg:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=21979041

An NP is a Noun Phrase, V is a Verb, and so on. Observe how the sentence diagram takes a

linear sentence and turns it into a tree-shaped representation of the grammatical structure. We
want to do the same for programs.

23

https://en.wikipedia.org/wiki/Sentence_diagram

Representing Abstract Syntax

In the rest of this book, except where indicated otherwise, we will implement things in the plait
language of Racket. Please make sure you have plait installed to follow along.

We will create a new tree datatype in plait to represent ASTs. In the sentence diagram above, the
leaves of the tree are words, and the nodes are grammatical terms. In our AST, the leaves will be
numbers, while the nodes will be operations on the trees representing each sub-expression. For
now, we have only one operation: addition. Here’s how we can represent this in plait syntax:

(define-type Exp
[num (n : Number)]
[plus (left : Exp) (right : Exp)])

This says:
e We are defining a new type, Exp
e There are two ways of making an Exp
e One way is through the constructor num:
o A num takes one argument
o That argument must be an actual number
e The other way is through the constructor plus:
o A plus takes two arguments
o Both arguments must be Exps

If it helps as you read what follows, this is very analogous to the following Java pseudocode
skeleton (or the analog with Python dataclasses):

abstract class Exp {}

class num extends Exp {
num(Number n) { ... }

}

class plus extends Exp {
plus(Exp left, Exp right) { ... }
}

Let’s look at how some of the previous examples would be represented:

Surface Syntax AST

1 (num 1)

24

https://docs.racket-lang.org/plait/index.html

2.3 (num 2.3)
1+ 2 (plus (num 1) (num 2))
(1 +2) +3 (plus (plus (num 1) (num 2))
(num 3))
1+ (2 + 3) (plus (num 1)
(plus (num 2) (num 3)))
1+ ((2+3)+4) (plus (num 1)
(plus (plus (num 2)
(num 3))
(num 4)))

Observe a few things about these examples:

The datatype definition does not let us directly represent surface syntax terms such as 1
+ 2 + 3 + 4; any ambiguity has to be handled by the time we construct the
corresponding AST term.

The number representation might look a bit odd: we have a num constructor whose only
job is to “wrap” a number. We do this for consistency of representation. As we start
writing programs to process these data, it'll become clear why we did this.

Notice that every significant part of the expression went into its AST representation,
though not always in the same way. In particular, the + of an addition is represented by
the constructor; it is not part of the parameters.

The AST really doesn’t care what surface syntax was used. The last term could instead
have been written as

(+ 1
(+ (+ 2 3)
4))

or even as

and it would presumably produce the same AST.

In short, ASTs are tree-structured data that represent programs in programs. This is a
profound idea! In fact, it’s one of the great ideas of the 20th century, building on the brilliant

25

work of Godel (encoding), Turing (universal machine), von Neumann (stored program
computer), and McCarthy (metacircular interpreter).

Aside: Not every part of the source program has been represented in the AST. For
instance, presumably both1 + 2 and 1 + 2 would be represented the same way,
ignoring the spaces. In practice, a real language implementation does need to know
something about the syntax: for instance, to highlight pieces of the program source when
there is an error, as DrRacket does. Therefore, real-world implementations use abstract
syntax but with metadata relating it back to the source.

26

Evaluating Arithmetic

Defining the Evaluator

Having seen how to represent arithmetic programs, we turn to writing an evaluator program
that turns them into answers.

What is the type of this evaluator? Clearly it consumes programs, which here are represented by
Exps. What does it produce? In this case, all these expressions are going to produce numbers.
For this reason, we’ll call this a calculator, or calc for short, for now. We can thus give calc the

type
(calc : (Exp -> Number))
Let’s now try to define its body. Clearly we must have

(define (calc e)

)

In the body, given an Exp, we will want to take it apart using type-case, which tells us there are
two options, each with some additional data (this is the moral equivalent of the method dispatch
we’d have used in Java):

(type-case Exp e
[(num n) ...]
[(plus 1 r) ...1)

What happens in the case that the whole expression is already a number? Well, we have our
answer, so we just return it. Otherwise, we have to add the two sides:

(type-case Exp e
[(num n) n]
[(plus 1 r) (+1r)])

giving us an overall body of:

(define (calc e)
(type-case Exp e
[(num n) n]
[(plus 1 r) (+ 1 r)]))

27

Let’s run it to...oops! We get a type error! It tells us that addition is expecting a number, but 1 is
not a number: it’s an Exp. Ah, that’s because 1 and r still represent expressions, not the answer
that the expressions evaluate to. To fix that, we need something that can turn an expression into
a number...which is precisely what we’re defining! Thus, we instead write

(define (calc e)
(type-case Exp e
[(num n) n]
[(plus 1 r) (+ (calc 1) (calc r))]))

The type-checker is happy now. And sure enough, we can confirm that our examples produce
what we expect. For instance:

(calc (num 1))

produces 1,

(calc (plus (num 1) (num 2))
produces 3, and

(plus (num 1)
(plus (num 2) (num 3)))

produces 6.

Aside: We've glossed over a detail: we've assumed that + always means numeric
addition (which was already implicit in calling it “plus” in the AST). But some languages
allow any number of different types to be “added”: e.g., it can also concatenate strings. In
such languages, the name in the AST might be something more generic, and the
evaluator would need to handle the different possible behaviors.

In fact, we've glossed over something even more basic: what numeric addition means, or
for that matter, even what numbers are. As we see from the Mystery Language:
Arithmetic, there are many choices here. In our calculator, we have adopted numbers
from plait (in num) and addition from plait (by using +). Those places in calc also tell us
where we would go to change those choices.

Testing the Evaluator

The examples above are fine, but we should write these in the syntax of tests, so that the
computer checks them for us automatically:

28

(test (calc (num 1)) 1)
(test (calc (num 2.3)) 2.3)
(test (calc (plus (num 1) (num 2))) 3)
(test (calc (plus (plus (num 1) (num 2))
(num 3)))
6)
(test (calc (plus (num 1)
(plus (num 2) (num 3))))
6)
(test (calc (plus (num 1)
(plus (plus (num 2)
(num 3))

(num 4))))
10)

Sure enough, when we run this, Racket confirms that all these tests pass.

Pro Tip: It can get annoying to scan through all this testing output to see whether any of
the tests failed. Simply add

(print-only-errors #true)

before your tests and Racket will suppress reporting on the passing tests, so you can
focus on the ones that failed: in other words, no news is good news.

In general, test early, often, and extensively. Programming language evaluators translate our
thoughts into computer actions. Therefore, it’s critical that they do so precisely. This is why
language implementations are some of the most tested software you can imagine (when’s the
last time you were stopped by a bug in your language implementation?), and people who will
tolerate bugs in just about any other software are much less forgiving of bugs in
implementations.

Some Subtler Tests

Try the following test:

(test (calc (plus (num ©.1) (num ©.2))) 0.3)

It succeeds! Are we happy? Suppose we instead write it as:
(test (calc (plus (num ©.1) (num ©.2))) 1/3)

As expected, it fails: but the error message reveals that the left-hand side evaluated to
0.30000000000000004. This should be a cue that we have actually gotten floating point

29

https://0.30000000000000004.com/

addition. This is because plait treats numbers written with a decimal point, like 0. 1, as floating
point bitstrings. However, floating point bitstrings cannot precisely represent the number 0.3.
In fact, plait’s test allows a little bit of numeric slack so that the passing test above works. (This
is because in plait, 0. 3 really does precisely represent the number 0.3, because it was written
literally and not the result of a floating-point computation.)

This reinforces a point we made in passing above and was therefore easy to miss: by adopting
plait’s primitives, we have also inherited its semantics. This may or may not be what we wanted!
Therefore, when writing an evaluator using a host language, we have to make sure that its
semantics are the one we want, otherwise we could be in for an unpleasant surprise. If we want
different behavior, we have to implement it explicitly.

Conclusion

This concludes our first look at SImPl: we have represented a program in a program, and we
have processed that represented program in a program. We have just written our first program
that processes programs—now we're off to the races!

30

Parsing: From Source to ASTs

The Problem

Earlier we went through the basic steps of the SImPI, but we left open a big question: how do we
get programs into the AST representation? Of course, the simplest way is what we already did: to
write the AST constructors directly, e.g.,

(num 1)
(plus (num 1) (num 2))

(plus (num 1)
(plus (num 2) (num 3)))

which, as we noted, has the virtue of also ignoring exactly how the program source was written.

However, this can get very tedious. We don’t want to have to write (num ...) every time we want
to write a number, for instance! In particular, the more tedious it is the less likely we are to write
many or complex tests, and that would be especially unfortunate. Therefore, we’d like a more
convenient surface syntax, along with a program to translate that into ASTs.

As we have already seen, there is a large number of surface syntaxes we can use, and we aren’t
even limited to textual syntax: it could be graphical; spoken; gestural (imagine you're in a virtual
reality environment); and so on. As we have noted, this wide range of modalities is
important—especially so if the programmer has physical constraints—but it’s outside the range
of our current study. Even with textual syntax, we have to deal with issues like ambiguity (e.g.,
order of operations in arithmetic).

In general, the process of converting the input syntax into ASTs is called parsing. We could
write a whole booklet just on parsing...so we won’t. Instead, we’re going to pick one syntax that
strikes a reasonable balance between convenience and simplicity, which is the parenthetical
syntax of Racket, and has special support in plait. That is, we will write the above examples as

1
(+12)
(+ 1 (+ 2 3))

and see how Racket can help us make these convenient to work with. In fact, in this book we will
follow a convention (that Racket doesn’t care about, because it treats (), [], and {}
interchangeably): we’ll write programs to be represented using { } instead of (). Thus, the above
three programs become

31

1
{+ 1 2}
{+ 1 {+ 2 3}}

S-Expressions

There is a name for this syntax: these are called s-expressions (the s- is for historical reasons). In

plait, we will write these expressions preceded by a back-tick (). A back-tick followed by a

Racket term is of type S-Exp. Here are examples of s-expressions:
"1

"2.3

T -40

These are all numeric s-expressions. We can also write

{+ 1 2}
{+ 1 {+ 2 3}}

It’s not obvious, but these are actually list s-expressions. We can tell by asking

> (s-exp-list? "1)

- Boolean

#f

> (s-exp-list? "{+ 1 2})

- Boolean

#t

> (s-exp-list? “{+ 1 {+ 2 3}})
- Boolean

#t

So the first is not but the second two are; similarly,

> (s-exp-number? 1)

- Boolean

#t

> (s-exp-number? “{+ 1 {+ 2 3}})
- Boolean

#f

The S-Exp type is a container around the actual number or list, which we can extract:

> (s-exp->number 1)

32

Number

(s-exp->1list "{+ 1 2})
(Listof S-Exp)
(list "+ "1 "2)

Do Now: What happens if you apply s-exp->number to a list s-exp or s-exp->listtoa
number s-expression? Or either to something that isn't an s-expression at all? Try it right
now and find out! Do you get somewhat different results?

Let’s look at that last output above a bit more closely. The resulting list has three elements, two
of which are numbers, but the third is something else:

T+

is a symbol s-expressions. Symbols are like strings but somewhat different in operations and
performance. Whereas there are numerous string operations (like substrings), symbols are
treated atomically; other than being converted to strings, the only other operation they support
is equality. But in return, symbols can be checked for equality in constant time.

Symbols have the same syntax as Racket variables, and hence are perfect for representing
variable-like things. Thus

> (s-exp-symbol? "+)
- Boolean

#t

> (s-exp->symbol "+)
- Symbol

+
This output shows how symbols are written in Racket: with a single-quote ().

There are other kinds of s-expressions as well, but this is all we need for now! With this, we can
write our first parser!

Primus Inter Parsers

Do Now: Think about what type we want for our parser.
What does our parser need to produce? Whatever the calculator consumes, i.e., Expr. What does

it consume? Program source expressions written in a “convenient” syntax, i.e., S-Exp. Hence, its
type must be

33

(parse : (S-Exp -> Exp))
That is, it converts the human-friendly(ier) syntax into the computer’s internal representation.

Writing this requires a certain degree of pedantry. First, we need a conditional to check what
kind of s-exp we were given:

(define (parse s)
(cond
[(s-exp-number? s) ...]
[(s-exp-1ist? s) ...1))

If it’s a numeric s-exp, then we need to extract the number and pass it to the num constructor:
(num (s-exp->number s))

Otherwise, we need to extract the list and check whether the first thing in the list is an addition
symbol. If it is not, we signal an error:

(let ([1 (s-exp->list s)])
(if (symbol=? '+
(s-exp->symbol (first 1)))

(error 'parse "list not an addition")))
Otherwise, we create a plus term by recurring on the two sub-pieces.

(plus (parse (second 1))
(parse (third 1)))

Putting it all together:

(define (parse s)
(cond
[(s-exp-number? s)
(num (s-exp->number s))]
[(s-exp-1list? s)
(let ([1 (s-exp->list s)])
(if (symbol=? '+
(s-exp->symbol (first 1)))
(plus (parse (second 1))
(parse (third 1)))
(error 'parse "list not an addition")))]))

34

It’s all a bit much, but fortunately this is about as hard as parsing will get in this book!
Everything you see from now on will basically be this same sort of pattern, which you can freely
copy.

We should, of course, make sure we’ve got good tests for our parser. For instance:

(test (parse "1) (num 1))
(test (parse "2.3) (num 2.3))
(test (parse "{+ 1 2}) (plus (num 1) (num 2)))
(test (parse "{+ 1
{+ {+ 2 3}
4}})
(plus (num 1)
(plus (plus (num 2)
(num 3))

(num 4))))

Do Now: Are there other kinds of tests we should have written?

We have only written positive tests. We can also write negative tests for situations where we
expect errors:

(test/exn (parse “{1 + 2}) "")

test/exn takes a string that must be a substring of the error message. You might be surprised
that the test above uses the empty string rather than, say, "addition". Try out this example to
investigate why. How can you improve your parser to address this?

Other situations we should check for include there being too few or too many sub-parts.
Addition, for instance, is defined to take exactly two sub-expressions. What if a source program
contains none, one, three, four, ...? This is the kind of pedantry that parsing calls for.

Once we have considered these situations, we’re in a happy place, because parse produces
output that calc can consume. We can therefore compose the two functions! Better still, we can
write a helper function that does it for us:

(run : (S-Exp -> Number))

(define (run s)
(calc (parse s)))

So we can now rewrite our old evaluator tests in a much more convenient way:

(test (run "1) 1)

35

(test
(test
(test
(test

(test

(run
(run
(run
6)
(run
6)
(run
10)

“2.3) 2.3)

“{+ 1 2}) 3)
H{+ {+1 2} 3})
“{+ 1 {+ 2 3}})

{+ 1 {+ {+ 2 3} 4}})

Compare this against the calc tests we had earlier!

36

Evaluating Conditionals

So far our language has had only arithmetic. Building on Mystery Language: Conditionals, we
will now examine how to extend our language to also support conditionals. There can be quite
complex conditional expressions in real languages, but for our purposes it will suffice to have an
if with three parts: the conditional, the then-branch, and the else-branch. Later, when we learn
how to extend the language, we can see how to layer more sophisticated conditional expressions
atop this.

In SImPI, we have to do at least two things:

1. Extend the datatype representing expressions to include conditionals.
2. Extend the evaluator to handle (the representation of) these new expressions.

Optionally, if we have a parser, we should also

3. Extend the parser to produce these new representations.
Extending the AST

Because we have fixed our conditionals to have three parts, we just need to represent that in the
AST. This is straightforward:

(define-type Exp
[num (n : Number)]
[plus (left : Exp) (right : Exp)]
[cnd (test : Exp) (then : Exp) (else : Exp)])

The real work will happen in the evaluator.
Extending the Calculator

Clearly, adding conditionals doesn’t change what our calculator previously did, we can leave that
intact, and just focus on the handling of if:

(define (calc e)
(type-case Exp e
[(num n) n]
[(plus 1 r) (+ (calc 1) (calc r))]
[(cnd c t e) ...]1))

37

Indeed, we can recursively evaluate each term, in case it’s useful:

(define (calc e)
(type-case Exp e
[(num n) n]
[(plus 1 r) (+ (calc 1) (calc r))]
[(cnd ¢ t e) ... (calc ¢) ... (calc t) ... (calc e) ...]))

Let’s take these one at a time.

But now we run into a problem. What is the result of calling (calc c)? We expect it to be some
kind of Boolean value. But we don’t have Boolean values in the language!

That’s not all. Above, we have written both (calc t) and (calc e). However, the whole point
of a conditional is that we don’t want to evaluate both, only one. So we have to pick which one to
evaluate based on some criterion.

The Design Space of Conditionals

Even the simplest conditional exposes us to many variations in language design. The intent is
that test-expression is evaluated first; if it results in a true value then (only) the then-expression
is evaluated, else (only) the else-expression is evaluated. (We usually refer to these two parts as
branches, since the program’s control must take one or the other.) However, even this simple
construct results in at least three different, mostly independent design decisions:

1. What kind of values can the test-expression be? In some languages they must be Boolean
values (two values, one representing truth and the other falsehood). In other languages
this expression can evaluate to just about any value, with some set—colloquially called
truthy—representing truth (i.e., they result in execution of the then-expression) while
the remaining ones are falsy, meaning they cause the else-expression to run.

Initially, it may seem attractive to design a language with several truthy and falsy values:
after all, this appears to give the programmer more convenience, permitting
non-Boolean-valued functions and expressions to be used in conditionals. However, this
can lead to bewildering inconsistencies across languages:

Value JavaScript Perl PHP Python Ruby
-1 truthy truthy truthy truthy truthy
0 falsy falsy falsy falsy truthy

38

" falsy falsy falsy falsy truthy
"o" truthy falsy falsy truthy truthy
NaN falsy truthy truthy truthy truthy
nil, null, falsy falsy falsy falsy falsy
None,

undefined

[] truthy truthy falsy falsy truthy
empty map truthy falsy falsy falsy truthy
or object

Of course, it need not be so complex. Scheme, for instance, has only one value that is
falsy: false itself (written as #false). Every other value is truthy. For those who value
allowing non-Boolean values in conditionals, this represents an elegant trade-off: it
means a function need not worry that a type-consistent value resulting from a
computation might cause a conditional to reverse itself. (For instance, if a function
returns strings, it need not worry that the empty string might be treated differently from
every other string.) Note that Ruby, which is inspired in part by Scheme, adopted this
simple model. Lua, another Scheme-inspired language, is also spartan in its falsy values.

2. What kind of terms are the branches? Some languages make a distinction between
statements and expressions; in such languages, designers need to decide which of these
are permitted. In some languages, there are even two syntactic forms of conditional to
reflect these two choices: e.g., in C, if uses statements (and does not return any value)
while the “ternary operator” ((...?...:...)) permits expressions and returns a value.

3. Ifthe branches are expressions and hence allowed to evaluate to values, how do the
values relate? Many (but not all) languages with static type systems expect the two
branches to have the same type []. Languages without static type systems usually
place no restrictions.

Aside: While writing an earlier version of this very chapter, I stumbled on a strange bug
in the Pyret programming language: all numeric s-expressions parsed as s-num values

except 0, which parsed as a s-sym. Eventually Justin Pombrio reported: “It’s a silly bug
with an if in JavaScript that’s getting @ and thinking it’s false.” Seems fitting.

Using Truthy-Falsy Values

Some languages use truthy-falsy values to handle partial functions. Instead of signaling an error,
they return a falsy value when the argument cannot be handled. For instance, it is common to

39

return #false in Racket or None in Python as an error code, and a proper value for normal
execution. Consider this Racket example:

(define (g s)
(+ 1 (or (string->number s) 0)))

This function accepts a string that may or may not represent a number. If it does, it returns one
bigger number; otherwise it returns 1:

(test (g "5") 6)
(test (g "hello") 1)

This works because string->number returns a number or, if the string is not legal, #false. In
Racket, all values other than #false are truthy. Thus, legitimate strings short-circuit evaluation
of the or, while non-numeric strings result in 0. These therefore serve as a rough-and-ready
option types in languages that don’t (or didn’t) have proper datatype constructors.

We will discuss this issue further later in the book [:].
Implementing Conditionals

Okay, so we have many decisions to make! To first get a working evaluator, without having to go
beyond numbers, we can use a slightly different conditional construct: one that checks whether
evaluates to a special numeric value, such as 0. That is, instead of a proper if, we really have
something we might call i@ that works only for numbers.

How do we make this choice? Luckily, we’re writing our interpreter in plait, which of course
already has a conditional. Therefore, we can just reuse it:

(define (calc e)
(type-case Exp e
[(num n) n]
[(plus 1 r) (+ (calc 1) (calc r))]
[(cnd c t e) (if (zero? (calc c))
(calc t)

(calc e))]))

Observe that the semantics of the conditional—that @ is true, and everything else is false—is now
made manifest in the body of calc. If we want a different semantics, that’s the part of the
program to zero into and change.

40

This solution, and indeed so far our entire evaluator, might feel a bit... disappointing? We have
numbers and conditionals, sure, but all we’ve done is (mostly) deferred to plait to handle these.
Here are some thoughts on this:

1. This is true!

2. This is not entirely true. We have made some conscious decisions, like the handling of
conditionals.

3. Infact, we have made even more decisions, whether or not we were conscious of them,
such as the handling of numbers. We just happened to defer those to plait, but we could
have made other decisions if we wanted.

4. This reuse is actually part of the power of an interpreter: it lets you exploit features that
have already been built instead of having to re-implement all of them from scratch.

5. By reusing the host language (here, plait), we can zero in on the differences (like the
handling of conditionals), which would otherwise be lost if we had to implement
everything. Later we will see stronger departures from the semantics of plait.

Adding Booleans

Okay, so what if we wanted proper Booleans?
Again, to employ SImP], we need to alter the AST, the evaluator, and the parser.

We can add Booleans much like we did numbers: with a constructor that wraps a plait
representation of the Boolean.

(define-type Exp
[num (n : Number)]
[bool (b : Boolean)]
[plus (left : Exp) (right : Exp)]
[cnd (test : Exp) (then : Exp) (else : Exp)])

It’s very important to keep in mind what the num and bool constructors stand for. Recall that
this is abstract syntax: we are just (abstractly) representing the program that the user wrote,
not the result of its evaluation. Therefore, these constructors are capturing syntactic constants in
the source program: values like 3.14 and -1 for the former and #true and #false for the latter.
They do not represent compound expressions that will evaluate to numbers or Booleans. What
an expression will evaluate to, for now, can only be determined by running it. Later [], we will
see there are other ways of doing it too!

Aside: The abstract syntax does not dictate what concrete syntax we use. For instance,
we may write numbers as 3 or as III. We might write Boolean values as #t, #true, true,
True, We may even have different concrete syntaxes for the same abstract syntax.
This is precisely the abstraction that abstract syntax provides!

41

Easy peasy! This naturally suggests what we should do in the evaluator:

(define (calc e)
(type-case Exp e
[(num n) n]
[(bool b) b]
[(plus 1 r) (+ (calc 1) (calc r))]
[(cnd c t e) (if (zero? (calc c))
(calc t)

(calc e))]))

Oh...oops. This version of calc doesn’t type-check, because our calculator is supposed to return
only numbers, not Booleans!

In fact, we had to know that this couldn’t last. We aren’t interested only in calculators; we want
to build full-fledged programming languages. They have a wide range of values, i.e., answers:
numbers, Boolean, strings, images, functions, and more.

The Value Datatype

Therefore, we first need to define a datatype that reflects the different kinds of values that an
evaluator can produce. We will follow a convention and call the return type constructors ...V to
distinguish from the inputs. Dually, we’ll call the inputs ...E (for expressions) to distinguish from
the outputs.

First we’ll rename our expressions:

(define-type Exp
[numE (n : Number)]
[boolE (b : Boolean)]
[plust (left : Exp) (right : Exp)]
[cndE (test : Exp) (then : Exp) (else : Exp)])

(nothing has changed other than the names of the constructors).

Now we introduce a Value datatype to represent the types of answers our evaluator can
produce:

(define-type Value

[numV (the-number : Number)]
[boolV (the-boolean : Boolean)])

42

We update the type of our evaluator:
(calc : (Exp -> Value))
and the early parts are easy:

(define (calc e)
(type-case Exp e
[(numE n) (numV n)]
[(boolE b) (boolV b)]

)
Updating the Evaluator

Now suppose we try to use our existing code:

[(plusE 1 r) (+ (calc 1) (calc r))]

This has two problems. The first is we can’t return a number; we have to return a numv:
[(plusE 1 r) (numV (+ (calc 1) (calc r)))]

But now we run into a subtler problem. The type-checker is not happy with this program. Why?

Because the result of calc is a Value, and + consumes only Numbers. Indeed, the type checker is
forcing us to make a decision here: what happens if one of the sides of + does not evaluate to a
number?

First, let’s build an abstraction to handle this, so that we can keep the core of the interpreter
relatively clean:

[(plusE 1 r) (add (calc 1) (calc r))]

Now we can defer all the logic of evaluating + to add. Now we have to make a semantic decision.
Should we be allowed to “add” two Boolean values? What about adding a number to a Boolean
or vice versa? Though there isn’t quite a SMoL decision here—some languages are very strict
while others are very permissive—the least-non-standard policy is to require both branches to
evaluate to numbers, which we would express as follows:

(define (add v1 v2)
(type-case Value vl
[(numVv n1)
(type-case Value v2

43

[(numV n2) (numV (+ nl n2))]
[else (error '+ "expects RHS to be a number")])]
[else (error '+ "expects LHS to be a number")]))

Observe that these else clauses can easily represent other decisions. We can embed an entire
family of mystery languages in the different choices available!

Exercise: Why did we write the numV constructor in add rather than in calc?

Pro Tip: You've just added a complex chunk of code. Now would be a very good time to
test your evaluator. Here are two things to consider:

1. Right now the code for conditionals also does not type-check. You may find it
convenient to replace the entire RHS with something semantically incorrect but
type-correct, like (numv @), so you restore your working evaluator.

2. Don’t forget to test for the error cases! You would do so using test/exn. For
instance:

(test/exn (calc (plustE (numE 4) (boolE #false))) "RHS")
Let’s now turn our attention to the conditional (with the constructor name updated):
[(cndE c t e) ...]

The core logic must clearly be similar: check something about the condition, and based on it,
evaluate only one of the other two clauses. Once again, we have to make decisions about how we
handle the conditional: should we strictly require a Boolean value, or should we make a
truthy/falsy decision? We can again defer that to a helper function:

[(cndE ¢ t e) (if (boolean-decision (calc c))
(calc t)
(calc e))]))

Again, the least non-standard policy, and one that sets up later material, is to be strict about
requiring a Boolean:

(define (boolean-decision v)
(type-case Value v
[(boolV b) b]
[else (error 'if "expects conditional to evaluate to a boolean")]))

But again, starting from a strict interpretation, we can see where we can give in to any urges we
feel to design a more liberal semantics: by replacing the else clause.

44

Observe, by the way, that we did something different with conditionals than we did for addition.
With add, we evaluated both branches and gave it their corresponding Values. It would be a
terrible idea to do that with conditionals, because the entire point of a conditional is to not
evaluate one of the branches! We could have sent the ASTs for the branches to a helper function,
but what we have done above also works well: it localizes the variation in the semantics to the
helper function, but keeps what is not expected to change (the fact that a conditional syntax
leads to a conditional evaluation) in the core of the evaluator.

45

Evaluating Local Binding

Most programming languages have some notion of local binding. There are two words there,
which we’ll tease apart:
e Binding means to associate names with values. For instance, when we call a function, the
act of calling associates (“binds”) the formal parameters with the actual values.
e Local means they are limited to some region of the program, and not available outside
that region.
For instance, in many languages we can write something like

fun f(x):
y =2
X +y

This seems clear enough. But here is a more subtle program:

fun f(x):
for(y from @ to 10):
print(x + y)
y

Is that legal? It depends on whether the y is still “alive” or “active” or “visible” or whatever other
phrase you would like; formally, we would say, it depends on whether y is in scope. Specifically,
we’d ask whether the last y is a bound instance of the binding that takes place in the for.

This is complicated! Many languages do rather odd, complicated, and certainly unintuitive
things, as you will see from Mystery Languages. These odd things are not really part of SMoL; if
anything, they are a violation of it.

A Syntax for Local Binding

Part of the problem is actually syntactic. When we write a program like the above, there’s no
clear beginning or ending of the scope of y (i.e., the region where y is bound). This is actually a
great virtue of parenthetical syntax: it suggests a clear region (between the parentheses). Of
course, we have a responsibility to make sure that that’s where the variable is actually bound
(though this is something that we’ll find, in a little while, is not so trivial).

Following the syntax of Racket, we’ll add a new construct to our language. At this point it’s
getting a bit tricky to keep track of the full syntax, so we’ll use a notation called BNF (short for

Backus-Naur Form). Let’s start with our arithmetic language:

<expr> ::= <num>

46

| {+ <expr> <expr>}

which reads as “define (: : =) expr (short for expression) to be either a number or (|) the surface
syntax consisting of an opening brace ({), a plus sign (+), an expr, another expr, and a closing
brace”. BNF gives us a convenient notation for the grammar of a language through its concrete
syntax, and our abstract syntax will usually correspond very directly to the BNF in a very natural
manner. (Observe, however, that in the BNF, we simply say that each sub-expression is an expr,
because that’s all we need to know to properly form programs. However, in the AST, we give the
parts different names to tell them apart.)

Notation: BNF is divided into terminals and non-terminals. Non-terminals are
placeholders like expr and num above: they stand for many more possibilities (an expr
above can be replaced with one of two possibilities (for now), while there are many
possible ways to write nums). They are given this name because the grammar doesn’t
“terminate” here: the name is a place-holder that can (and must) be further expanded.

The convention is to write non-terminals inside <pointy brackets>. Terminals, in
contrast, are concrete syntax, like {, }, and + above. They are so-called because they
stand for themselves and can’t be expanded further. They are sometimes also called
literals, because they must be written literally as shown. For this reason, they are not
surrounded by any decorative symbols. Everything is written literally unless it’s a
non-terminal, in which case it’s replaced by something according to the definition of the
non-terminal.

Now we can define an extended language:

<expr> ::= <num>

| {+ <expr> <expr>}
| {letl {<var> <expr>} <expr>}

That is, we're adding a new language construct, let1, which has three parts: a variable (var)
and two expressions (the two expr’s).

The Meaning of Local Binding

Do Now: Here are some examples of this new construct; what do you expect each one to
produce?

{letl {x 1}
{+ x x}}

{let1 {x 1}
{letl {y 2}

47

{+ x y}}}

{let1 {x 1}
{letl {y 2}
{letl {x 3}
{+ X y}}}}

{letl {x 1}
{+ x

{letl {x 2} x}}}

{letl {x 1}
{+ {letl {x 2} x}
X}}

Do Now: Oh, did you notice something? None of the above programs is syntactically
legal! Why?

It’s because there is no syntax yet for variables. Our syntax permits us to bind variables but not
to use them. So we have to fix that:

<expr> ::= <num>
| {+ <expr> <expr>}
| {letl {<var> <expr>} <expr>}
| <var>

Now the above terms are all syntactically valid, so we can go back to the question of what they
should evaluate to.

The first two programs are pretty obvious:

{letl {x 1}
{+ x x}}

should evaluate to 2, and

{letl {x 1}
{let1 {y 2}
{+ x y}}}

should evaluate to 3.

48

How about this program?

{letl {x 1}
{let1 {y 2}
{let1 {x 3}
{+ X y}}}}

Here we see the advantage of the parenthetical notation. In a more conventional syntax, this
might correspond to

X X < X
o
< W N PR

where any number of things could happen: we might have two different x’s; we might have an x
bound and then modified; and in some languages, an introduction of x could be “lifted” so that
it’s no longer clear which x is most recent. With our parenthetical syntax, though, it’s pretty
clear what scopes we want. To determine the value, we can rely on our old friend, substitution.
However, when we substitute the outer x, we expect that to stop at the point where the inner x
begins: that is, the inner x shadows the outer one. Hence, the result should be 5.

Do Now: The example above is uninteresting in that the outer x never sees any use.
What kind of program might we write that has two let bindings of x that lets us clearly
see that there are two x’s?

That’s what this program shows:

{letl {x 1}
{+ x

{letl {x 2} x}}}

It seems fairly clear that the left x in the addition should be 1, while x in the right expression
should be shadowed and hence should evaluate to 2. The sum should therefore be 3.
Incidentally, DrRacket is useful in such cases, because we can write an equivalent expression in
#lang racket—

(let ([x 11)
(+ x
(let ([x 2])
X)))

—and hover over the last x, and DrRacket (for Racket, which represents a fairly ideal form of
SMoL) will automatically draw a blue arrow showing where the variable is bound:

49

#lang racket

(let ([x 11)
(+ x
tlet 21)

Now for a more complex example:

{letl {x 1}
{+ {letl {x 2} x}
X}}

Here, it’s especially useful to turn to substitution to determine the answer. Again, it seems clear
that x in the left expression is shadowed and hence should be 2. The big question, of course, is
what about the x on the right hand side of the addition (i.e., on the last line)?

Here, again, conventional textual syntax is fraught with ambiguity: is

X =2

on the left a binding of a new x or a modification of the outer x? Those are two very different
things! But with our syntax it’s much clearer that it should be the former, not the latter. Thus, by

substitution, the outer x is replaced by 1, giving

{+ {letl {x 2} x}
1}

in which we perform one more substitution, producing

{+ 2
1}

and hence 3. This time, DrRacket is especially useful confirmation:

50

#lang racket

(let ([x 1])
(+ (Vet ([x 2])
X)

))

That leaves just one program:

Because x is not bound anywhere, this is just a syntax error.
Static Scoping

The program

{letl {x 1}
{+ {let1l {x 2} x}
X}}

introduces us to a very important concept: indeed, one of the central ideas behind SMoL. This is
that a variable’s binding is determined by its position in the source program, and not by the
order of the program’s execution. That is, the x on the last line is bound by the same place—and
hence obtains the same value—irrespective of other bindings that took place before it was
evaluated. To understand this better, let’s see a progression of programs:

{letl {x 1}
{+ {letl {x 2} x}
X}}

You might think it’s okay whether it produces 3 or 4. How about this?

{letl {x 1}
{+ {if true
{letl {x 2} x}
4}
X}}

51

You should expect the same out of this: the conditional is always true, so clearly we are always
going to evaluate the inner binding, so its answer should be the same as for the previous
program. But how about this?

{let1 {x 1}
{+ {if true
4
{letl {x 2} x}}
X}}

Now you might not be so sure. Since the conditional is never taken, you probably don’t want the
inner binding to have an influence. That is, you are willing to let the program’s control flow
influence the bindings. On its face that sounds reasonable, but now how about this program?

{letl {x 1}
{+ {if {random}
4
{letl {x 2} x}}
X}}
or
{letl {x 1}
{+ {if {moon-is-currently-full}
4
{letl {x 2} x}}
X}}

Are you okay with the binding structure changing every two weeks? What about this version:

{let1 {x 1}
{+ {if {moon-is-currently-full}
4
{1let1 {y 2} x}}
y}}

Then, depending on the phase of the moon, the program either produces an answer or results in
an unbound-variable error.

The decision to let control flow determine binding is called dynamic scope. It is the one
unambiguously wrong design decision in programming languages. It has a long and sordid
history: the original Lisp had it, and it was not until over a decade later that Scheme fixed it.
Unfortunately, those who don’t know history are doomed to repeat it: early versions of Python

52

and JavaScript also had dynamic scope. Taking it back out has been a herculean effort. Dynamic
scope means:

e We can’t be sure about the binding structure of our programs.
e The evaluator can’t be sure, either.
e Nor can programmer tools.

For instance, a program refactoring tool needs to know binding structure: even a simple
“variable renaming” tool needs to know which variables to rename. In DrRacket, there is no
ambiguity, so variable renaming works correctly. This is not true in other languages: see, for
instance, Appendix 2 of this paper on the semantics of Python.

The opposite of dynamic scope—where we can determine the binding by following the structure
of the AST—is called static scope. Static scope is a defining characteristic of SMoL.

Dynamic scope occurred in early implementations because it was easy to obtain: it was the
default behavior. We have to work a bit harder to obtain static scope, as we will see.

An Evaluator for Local Binding

Now that we’ve seen what behavior we want, we should implement it. That is, we’ll extend our
calculator to handle local binding (a feature you may well have wished your calculator had). To
reflect that our calculator is growing up, from now on we’ll call it an interpreter, abbreviated in
code to interp.

Let’s start with the new AST. For simplicity, we’ll ignore conditionals, which are anyway
orthogonal to our goal of handling local binding. Recall that we added two new branches to the
BNF, so we’ll want two new corresponding branches to the AST:

(define-type Exp
[numE (n : Number)]
[plust (left : Exp) (right : Exp)]
[varE (name : Symbol)]
[letlE (var : Symbol)
(value : Exp)

(body : Exp)])
We can also copy over our previous calculator, but we pretty quickly run into trouble:
(define (interp e)
(type-case (Exp) e

[(numE n) n]
[(varE s) ...]

53

https://cs.brown.edu/~sk/Publications/Papers/Published/pmmwplck-python-full-monty/

[(pluse 1 r) (+ (interp 1) (interp r))]
[(letlE var val body) ...]1))

What do we do when we encounter a 1et1E? For that matter, what do we do when we encounter
a variable? In fact, these two should be intimately connected: the variable binding introduced by
the former should substitute the variable use in the latter.

Caching Substitution

We repeatedly—and rightly—refer back to substitution to understand how programs should
work, and indeed will do so again later. But substitution as an evaluation technique is messy.
This requires us to constantly keep rewriting the program text, which takes time linear in the
size of the program (which can get quite large) for every variable binding. Most real language
implementations do not work this way.

Instead, we might think of employing a space-time tradeoff: we’ll use a little extra space to save
ourselves a whole lot of time. That is, we’ll cache the substitution in a data structure called the
environment. An environment records names and their corresponding values: that is, it’s a
collection of key-value pairs. Thus, whenever we encounter a binding we remember its value,
and when we encounter a variable, we look up its value.

Aside: As with all caches, we want them to only improve performance along a
dimension, not change the meaning. That is, we no longer want substitution to define
how we produce an answer. But, we still want it to tell us what answer to produce. This
will become important below.

We will use a hash table to represent the environment:

(define-type-alias Env (Hashof Symbol Value))
(define mt-env (hash empty)) ;; "empty environment"

We will need the interpreter to actually take an environment as a formal parameter, to use in
place of substitution. Thus:

(interp : (Exp Env -> Value))
(define (interp e nv) ...)

Now what happens when we encounter a variable? We try to look it up in the environment. That
may succeed or, in the case of our last example above, fail. We will use hash-ref, which looks
up keys in hash tables, and returns an Optionof type to account for the possibility of failure. We
can encapsulate it in a function that we will repeatedly find useful:

(define (lookup (s : Symbol) (n : Env))

54

(type-case (Optionof Value) (hash-ref n s)
[(none) (error s "not bound")]

[(some v) v]))

In the event the lookup succeeds, then we want the value found, which is wrapped in some. This

function enables our interpreter to stay very clean and readable:
[(varE s) (lookup s nv)]

Finally, we are ready to tackle 1let1. What happens here? We must
e evaluate the body of the expression, in
e an environment that has been extended, with
e the new name
e bound to its value.
Phew!

Fortunately, this isn’t as bad as it sounds. Again, a function will help a lot:

(extend : (Env Symbol Value -> Env))
(define (extend old-env new-name value)
(hash-set old-env new-name value))

With this, we can see the structure clearly:

[(letlE var val body)
(let ([new-env (extend nv
var
(interp val nv))])

(Observe that we used let in plait to define let1 in Paret. We’ll see more of this...)
In sum, our core interpreter is now:

(define (interp e nv)
(type-case Exp e
[(numE n) n]
[(varE s) (lookup s nv)]
[(plus 1 r) (+ (interp 1 nv) (interp r nv))]
[(letlE var val body)
(let ([new-env (extend nv
var
(interp val nv))])
(interp body new-env))]))

55

Exercise:

1.
2.

3.

4.

What if we had not called (interp val nv) above?

What if we’d used nv instead of new-env in the call to interp?}

Are there any other errors in the interpreter based on copying what we had
before?

We seem to extend the environment but never remove anything from it. Is that
okay? If not, it should cause an error. What program would demonstrate this
error, and does it actually do so? (If not, why not?)

This concludes our first interesting “programming language”. We have already been forced to
deal with some fairly subtle questions of scope, and with how to interpret them. Things will only
get more interesting from here!

56

Evaluating Functions

Now that we have arithmetic and conditionals, let’s proceed to creating a full-fledged
programming language by adding functions.

Functions in the Language

There are many ways to think about adding functions to the language. Many languages, for
instance, have top-level functions; e.g.:

fun f(x):
X + X

Indeed, some languages (such as C) only have top-level functions. Most modern languages,
however, have the ability to write functions outside the top-level: e.g.,

fun f(x):
fun sq(y):
y *y
sq(x) + sq(x)

and even to return those functions, and even to allow them to be written anonymously. Since
just about every modern language supports it, we’ll think of this as a component of SMoL.
Indeed, with such a facility, we don’t really need a named function construct per se: we could
instead have written

fun f(x):
sq = lam(y): y *y
sq(x) + sq(x)

And in turn we can replace f with a name-binding and 1am, too.
Extending the Representation

Therefore, let’s think about what it takes to evaluate functions-as-values to SMoL. We don’t need
functions to inherently have a name, because naming can be done by 1let1. We'll assume, for
simplicity, that all functions take only one argument; extending this to multiple arguments is left
as an exercise.

Exercise: What issues might we have to deal with when we extend functions from
having one argument only to having multiple arguments?

57

First, we need to extend our abstract syntax.
Do Now: How many new constructs do we need to add to the abstract syntax?

When we added 1let1, you may recall that it didn’t suffice to add one construct; we needed two:
one for variable binding and one for variable use. You'll often see this pattern when adding
values to the language. For any new kind of value, you can expect to see one or more ways to
make it and one or more ways to use it. (Even arithmetic: numeric constants were a way to make
them, arithmetic operations consumed them—but also made them.)

Likewise with functions, we need a way to represent both

lam(x): x * x

for defining new functions, and

sq(3)

to use them.
Terminology: In more advanced texts, you will sometimes see the (formally correct,
but perhaps slightly confusing) terms introduction and elimination: introduction brings
the new concept in, elimination uses them. Thus, the 1am introduces new functions, and
an application eliminates them.

We therefore add

[lamE (var : Symbol) (body : Exp)]
[appE (fun : Exp) (arg : Exp)]

to our AST.
Let’s assume we’ve already extended our parser, so that programs like the following are legal:

{letl {f {lam x {+ x x}}}
{f 3}}

{letl {x 3}
{letl {f {lam y {+ x y}}}
{f 3}}}

These parse, respectively, into

58

(letlE 'f (lamE 'x (plust (varE 'x) (varE 'x)))
(appE (vartE 'f) (numE 3)))

(letlE 'x (numk 3)
(letlE 'f (lamkE 'y (plust (varE 'x) (varkE 'y)))
(appE (varkE 'f) (numE 3))))

and should both evaluate to 6.
Evaluating Functions

Now let’s think about the evaluator, which by now we can think of as turning into a full-blown
interpreter.

Let’s start with the (almost) simplest kind of new program:
{lam x {+ x x}}
which is represented as
(lamE 'x (plusk (varE 'x) (varE 'x)))
Do Now: What do we want this program to evaluate to? Think in terms of types!

Remember that calc produces numbers. What number does the above expression evaluate to?
What number do you expect it to produce?

If we really want to stretch our credibility, we could either make up an encoding of it in a
number, or use a number in memory. But neither of these is what we would expect! Let’s look at
what some other languages do:

> (lambda (x) (+ x x))
#<procedure>

> (number? (lambda (x) (+ x x)))
#f

>>> lambda x: x + X

<function <lambda> at ©x108fd16a8>

>>> isinstance(lambda x: x + x, numbers.Number)
False

59

Both Racket and Python agree: the result of creating an anonymous function is a function-kind
of value, not a number. What this says is that we have to broaden the kinds of values that
interp can produce.

Terminology: A side-effect is a change to the system that is visible from outside the
body of a function. Typical side-effects are modifications to variables that are defined
outside the function, communication with a network, changes to files, and so on.

Terminology: A function is pure if, for a given input, it always produces the same
output, and has no side-effects. In reality, a computation always has some side-effects,
such as the consumption of energy and production of heat, but we usually overlook these
because they are universal. In a few settings, however, they can matter: e.g., ifa
cryptographic key can be stolen by measuring these side-effects.

Terminology: Traditionally, some languages have used the terms procedure and
function for similar but not identical concepts. Both are function-like entities that
encapsulate a body of code and can be applied (or “called”). A procedure is an
encapsulation that does not produce a value; therefore, it must have side-effects to be of
any use. In contrast, a function always produces a value (and may be expected to not
have any side-effects). This terminology has gotten completely scrambled over the years
and people now use the terms interchangeably, but if someone seems to be making a
distinction between the two, they probably mean something like the above.

Extending Values

What happens when evaluating a function? Both Racket and Python seem to suggest that we
return a function.

We could have no additional information about the function:

(define-type Value
[numV (the-number : Number)]
[boolV (the-boolean : Boolean)]
[funV])

(That syntax means funV is a constructor of no parameters. It conveys no information at all
other than the fact that it’s a funV; because we can’t mix types, it says, in particular, that a value
is not numeric or a Boolean—and nothing more.) But now think about a program like this
(assuming x is bound):

{{ifo x
{lam x {+ x 1}}
{lam x {- x 2}}}

60

5}

In both cases we’re going to get a funV value with no additional information, so when we try to
perform the application, we...can’t.

Instead, it’s clear that the function value needs to tell us about the function. We need to know
the body, because that’s what we need to evaluate; but the body can (and very likely does)
reference the name of the formal parameter, so we need that too. Therefore, what we really need
is

(define-type Value
[numV (the-number : Number)]
[boolV (the-boolean : Boolean)]
[funV (var : Symbol) (body : Exp)])

At this point, it seems like we’ve gone to a lot of trouble for nothing. We take numeric and
Boolean values and simply re-wrap them in new constructors, and now we’re doing the same
thing for functions. A certain Shakespeareian play’s title comes to mind.

Patience.

With what we have, we can already have a functioning interpreter. The lam case is obviously
very simple:

[(lamE v b) (funV v b)]

The application case is a bit more detailed. We need to:

1. Evaluate the function position, to figure out what kind of value it is.

2. Evaluate the argument position, since we’ve agreed that’s what happens in SMoL.

3. Check that the function position really does evaluate to a function. If it does not, raise an
error.

4. Evaluate the body of the function. But because the body can refer to the formal
parameter...

5. ...first make sure the formal is bound to the actual value of the argument.

Codifying this, in stages:

[(appE f a) (let ([fv (interp f nv)]
[av (interp a nv)])

)]
[(appE f a) (let ([fv (interp f nv)]

[av (interp a nv)])
(type-case Value fv

61

[(funV v b) ...]
[else (error 'app "didn't get a function")]))]

[(appE f a) (let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b)
(interp b ...)]
[else (error 'app "didn't get a function")]))]

[(appE f a) (let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b)
(interp b (extend nv v av))]
[else (error 'app "didn't get a function")]))]

Stepping Back

Putting it all together, we get the following interpreter:
(interp : (Exp Env -> Value))

(define (interp e nv)
(type-case Exp e
[(numE n) (numV n)]
[(varE s) (lookup s nv)]
[(pluse 1 r) (add (interp 1 nv) (interp r nv))]
[(lamE v b) (funV v b)]
[(appE f a) (let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b)
(interp b (extend nv v av))]
[else (error 'app "didn't get a function")]))]
[(letlE var val body)
(let ([new-env (extend nv
var
(interp val nv))])
(interp body new-env))]))

Exercise: We wrote down a particular ordering above, which we put into practice in the
code. But is that the same ordering that actual languages use? In particular, are

62

non-function errors reported after or before evaluating the argument? Experiment and
find out!

Since we’ve taken several steps to get here, it’s easy to lose sight of what we’ve just done. In just
20 lines of code (with a few helper functions), we have described the implementation of a full
programming language. Not only that, a language that can express all computations. When
Turing Award winner Alan Kay first saw the equivalent program, he says,

Yes, that was the big revelation to me when I was in graduate school—when I finally
understood that the half page of code on the bottom of page 13 of the Lisp 1.5 manual
was Lisp in itself. These were “Maxwell’s Equations of Software!” This is the whole world
of programming in a few lines that I can put my hand over.

I realized that anytime I want to know what I'm doing, I can just write down the kernel of
this thing in a half page and it’s not going to lose any power. In fact, it’s going to gain
power by being able to reenter itself much more readily than most systems done the
other way can possibly do.

We've just rediscovered this same beautiful, powerful idea! If you want to see the original, here’s
that manual (by McCarthy, Abrahams, Edwards, Hart, Levin). Here it is, copied:

63

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
https://en.wikipedia.org/wiki/Alan_Kay
https://queue.acm.org/detail.cfm?id=1039523
https://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf

evalquote is defined by using two main functions, called eval and apply. M
handles a function and its arguments, while gval handles forms. Each of these func-
tions also has another argument that is used as an association list for storing the val-
ues of bound variables and tunction names.

evalquote[fn;x] = apply[fn;x;NIL]
where
apply[fn;x;a] =
[atom[fn] ~ [eq[fn;CAR] = caar[x];
-~ eq[fn;CDR] - cdar[x];
eq[fn; CONS] - cons[car[x];cadr[x]];
eq[fn; ATOM] - atom[car[x]];
eq[fn; EQ] - eq[car[x];cadr[x]}
T —apply[evallfn;al;x;a]];
eq[car[fn; LAMBDA] — eval[caddr[fn];pairlis[cadr[fn];x;a]];
eq[car[fn}; LABEL] — apply[caddr[fn}; x;cons[cons[cadr[fn];
caddr[fn]];a]]]
eval[e;a] = [atom[e] — cdr[assoc[e;a]];
atom[car[e]] =
lea[car[e].QUOTE] - cadr[e];
eq[car[e; COND] -~ evcon[cdr[e];a];
T - apply[car[e];evlis[cdr[e];a];a]];
T - apply[car[e];evlis[cdr[e];a];a]]
pairlis and assoc have been previously defined.
evcon[c;a] = [eval[caar[c]a] - eval[cadar[c}a];
T —evcon[cdr[c]ia]]

and
evlis[m;a] = [null[m] - NIL;

T = cons[eval[car[m];a];evlis[cdr[m];a]]}

Alright, so we now have a working interpreter for a full-fledged language. But before we can feel
sure of that, we should try a few more examples to confirm that we’re happy with what we have.

Extending Tests

Well, actually, we shouldn’t be too happy. Consider the following examples:

(letlE 'x (numE 1)
(letlE 'f (lamE 'y (varE 'x))
(letlE 'x (numE 2)
(appE (vart 'f) (numk 10)))))

What do we expect it to produce? If in doubt, we can write the same thing as a Racket program:

(let ([x 11)
(let ([f (lambda (y) x)])
(let ([x 2])

64

(f 10))))

What we see is that in Racket, the inner binding of x does not override the outer one, the one
that was present at the time the function bound to f was defined. Therefore, this produces 1 in
Racket.

We should want this! Otherwise, consider this program:

(letlE 'f (lamE 'y (varE 'x))
(letlE 'x (numE 1)
(appE (vart 'f) (numk 10))))

This corresponds to

(let ([f (lambda (y) x)])
(let ([x 5])

(f 3)))

which has an unbound identifier (x) error. But our interpreter produces 1 instead of halting with
an error, which leads us right back to -+ dynamic scope - !

Return to Static Scope

Exercise: Run the following programs in the Stacker.

So how do we fix this? The examples above actually give us a clue, but there is another source of
inspiration as well. Do you remember that we started with substitution? We’'ll walk through
these examples in Racket, so that you can run each of them directly and check that they produce
the same answer. Consider again this program:

(let ([x 11)
(let ([f (lambda (y) x)])
(let ([x 2])

(f 10))))

Substituting 1 for x produces:

(let ([f (lambda (y) 1)])
(let ([x 2])

(f 10)))

Substituting f produces:

65

(let ([x 2])
((lambda (y) 1) 10))

Finally, substituting x with 2 produces (note that there are no xs left in the program!):
((lambda (y) 1) 10)

When you see it this way, it’s clear why the later binding of x should have no impact: it’s a
different x, and the earlier x has effectively already been substituted. Since we have agreed that
substitution is how we want our programs to work, our job now is to make sure that the
environment actually implements that correctly.

The way to do it is to recognize that the environment represents the substitutions waiting to
happen, and just remember them. That is, our representation of a function needs to also keep
track of the environment at the moment of function creation:

(define-type Value
[numV (the-number : Number)]
[boolV (the-boolean : Boolean)]
[funV (var : Symbol) (body : Exp) (nv : Env)])

This new and richer kind of funV value has a special name: it’s called a closure. That’s because
the expression is “closed” over the environment in which it was defined.

Terminology: A closed term is one that has no unbound variables. The body of a
function may have unbound variables—like x above—but the closure makes sure that
they aren’t really unbound, because they can get their values from the stored
environment.

Quote: “Save the environment! Create a closure today!” —Cormac Flanagan

Quote: “Lambdas are relegated to relative obscurity until Java makes them popular by
not having them.” —James Iry, A Brief, Incomplete, and Mostly Wrong History of
Programming Languages

That means, when we create a closure, we have to record the environment at the time of its
creation:

[(lamE v b) (funV v b nv)]
Finally, when we use a function (represented by a closure), we have to make sure we use the

stored environment, not the one present at the point of calling the function, which is the
dynamic one:

66

https://users.soe.ucsc.edu/~cormac/
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

[(appE f a) (let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b nv)
(interp b (extend nv v av))]
[else (error 'app "didn't get a function")]))]

Just to be clear: in the code above, the nv in the funV case intentionally shadows the nv bound
at the top of the interpreter. Thus, the call to extend extends the environment from the closure,
rather than the one present at the point of the call.

Exercise: Notice that the function and argument expressions (f and a, respectively) are
evaluated in the environment given to the interpreter, not the one inside the closure. Is
this correct? Or should they be using the closure’s environment?

You can do two things: argue from first principles or argue with examples. In the latter
case, you would modify the interpreter to make the other choice. You would then use a
sample input that produces different answers depending on which environment is used,
indicate which one is correct (showing what the equivalent Racket program would
produce can be a good argument), and use that to justify the chosen environment. Hint:
One of these you will need to argue from first principles, the other you should be able to
argue using a program.

A Subtle Test

In the examples above, we always use the closure in the scope in which it was defined. However,
our language is actually more powerful than that: we can return a closure and use it outside the
scope in which it was defined. Here’s a sample Racket program:

((let ([x 3])
(lambda (y) (+ x y)))

4)

Do Now: Take a moment to read it carefully. What should it produce?

First we bind the x, then we evaluate the lambda. This creates a closure that remembers the
binding to x. This closure is the value returned by this expression:

((let ([x 3])

(lambda (y) (+ x y)))
4)

67

This value is now applied to 4. It’s legal to do this, because the value returned is a function.
When we apply it to 4, that evaluates the sum of 4 and 3, producing 7. Sure enough, translating

this and sending it to our interpreter produces 7:

(test (interp (appE (letlE 'x (numE 3)
(lamkE 'y (plusk (varkE 'x) (vark 'y))))

(numk '4))
mt-env)
(numv 7))

Exercise: Here’s another test to try out, written as a Racket program:

((let ([y 3D
(lambda (y) (+y 1)))

5)

What does it produce in Racket? Translate it and try it in your interpreter.

68

eeeee Syntactic Sugar eeeee

We have now seen the essence of a small core language. In practice, programming languages
need to also be usable. To do this, they have to provide features that make programming
convenient. We will see they can do this while minimizing their effort and pain.

69

How SMoL Becomes Large

We have already been introduced to the idea of SImPI, the Standard Implementation Plan. The

core idea is that the program’s syntax is represented as abstract syntax using a (mutually)
recursive algebraic datatype, and we then write a similar (mutually) recursive program to

process it. What that program produces depends on the process we are trying to implement: an

interpreter produces values, a compiler produces programs (in another language), a

type-checker produces judgments about type-correctness (and more, as we’ll soon see), and so

on. But they all have the same basic structure.

In practice, this means that a SImPI needs to have a case to handle each of the constructs in the
language. This is not a problem in principle, but it can become onerous in practice. Suppose we

have two constructs that have a lot of repetition. Not only does it mean we have to duplicate

programming, it also means we have to duplicate maintenance: if we fix a bug in one, we have to

remember to fix it in the other in the corresponding way.

Redundancy in Languages

Where might we find such redundancy? There are several examples in real languages. For
instance, many languages have both for and while loops. Consider a typical for loop in C:

for(x = 0; x < 10; x++) {
sum += Xx;

}

This is exactly the same as

X = 0;

while (x < 10) {
sum += X;
X++;

}

There is, in fact, a general pattern:

for (INITIAL; CONDITIONAL; UPDATE) {
sum += Xx;

}

is the same (with some syntactic liberties) as

INITIAL;

70

while (CONDITIONAL) {
sum += Xj;
UPDATE;

}

Now imagine you're writing an interpreter for this. Clearly, the while loop’s implementation has
to make several recursive calls, iterate, check, and perhaps perform some other bookkeeping
(and maybe even manage temporary scope extensions). All of that work has to be duplicated for
for! Wouldn’t it be much simpler to instead implement it just once, and translate the for body
into a while body?

Why have both constructs at all? Because each one is convenient for different purposes. In
particular, there’s a certain stylistic use of while that would be harder to spot from a mass of
while code that is automatically classified for us with for. It adds to our vocabulary as
programmers. It just happens to also add to our pain as implementors. We’d like the
convenience and richer vocabulary without the pain.

Desugaring

This introduces a distinction between a core language and a surface language. The surface
language may have various conveniences, but these get translated into the core language, whose
constructs are all handled directly. The extra constructs—those that make it “sweeter” to
program—are called syntactic sugar. The program that translates surface programs down to the
core is called a desugarer, because it removes sugar. (In principle, a desugarer is actually a
compiler from the surface language to the core language. However, since the core language is a
sub-language of the surface, this is a very special case of compilation, and we find it useful to
have a special term to distinguish it from general compilation. Just like we find it useful to have
a special term to distinguish for from the general while...)

Aside: In a real implementation, this compilation requires a little more care. Suppose
you make an error using for, but the error was reported in terms of while: you'd be
pretty confused, because you never did type the while. As a special case, you may be a
student who doesn’t even know what while is! Modern desguaring systems, such as that
in Racket, have special support to take care of this in most of the common cases.

There are actually many more desugarings in real languages. For instance, and and or can
desugar into nested ifs. In JavaScript, o.x desugars into o["x"] (which will be relevant in a
while). In many languages, x += y is sugar for x = x + y.In Python, + desugars into the
method __add__. In fact, Python has a whole bunch of these desugarings; these methods are
called “dunder” methods (short for double-underscore), and a whole programming style of
“protocols” has evolved around it. Many languages (like Haskell and Python) have list
comprehensions, which desugar into function and method calls. And so on. In short, desugaring

71

https://twitter.com/gvanrossum/status/1307712322320785409

is everywhere in programming. If you don’t notice it, that’s part of the point: it feels like you're
working with a larger surface syntax than the implementor has to manage.

There are many ways in which desugaring can be implemented. One way is to parse the program
normally, then rewrite the AST into a subset of the same AST. But in some languages, especially
those with parenthetical syntax, there are two levels of parsing: the coarser parenthetical level
and the finer level of ASTs. This means we can perform rewriting on the parenthetical terms,
and the internal AST never needs to know about the sugars (i.e., it need cover only the core
language). These are typically called macro systems: systems in which program source (slightly
abstracted) is rewritten into program source, before parsing takes place. It’s important to
understand that most languages have syntactic sugar, but very few languages have macro
systems, which provide program rewriting capabilities directly to the programmer (as opposed
to hiding them inside the compiler).

Macros By Example

Racket is one of the few languages to have a macro system, and in fact has a very powerful one.
Its rarity means ideas we learn using macros will take some effort to port to other languages; but
its power means we can write quite sophisticated systems by leveraging the full power of Racket,
and we will do so. In essence, Racket macros compile an extended version of Racket—call it
Racket++, if you like—down to Racket, where we can then exploit the full power of the existing
Racket framework.

We will introduce the Racket macro system through a series of examples. In what follows, please
switch to using

#lang racket

because the restrictions and types of plait, while very useful for writing interpreters, can get in
the way of some of what we’ll write.

A New Conditional

Recall that Racket is a truthy/falsy language, where if takes any non-false value to be true.
Suppose we want a strict if that takes only Booleans. That is, we want to extend Racket itself
with a strict-if. Let’s try this:

(define (strict-if C T E)
(if (boolean? C)
(if C T E)
(error 'strict-if "expected a boolean")))

72

Try examples like:

(strict-if true 1 2)
(strict-if @ 1 2)

Seems to work as desired!
Do Now: Do you see what the problem is?

The problem is that we have an eager language (this is true of SMoL in general!), so strict-ifs
arguments are going to be evaluated before the body begins to execute. However, the whole
point of a conditional is to avoid evaluating part of the evaluation: Try

(strict-if true 1 (/ 1 9))
Compare this to what happens with
(if true 1 (/ 1 9))

Okay, so we can’t use functions for this purpose. We need some other definition mechanism that
consumes the syntax and rewrites that, instead of letting it evaluate right away. These are
macros.

Let’s dive into how the macro is written, because it’s not so different from the function:

(define-syntax strict-if
(syntax-rules ()
[(strict-if C T E)
(if (boolean? C)
(if C T E)
(error 'strict-if "expected a boolean"))]))

What are the pieces? define-syntax says we’re defining a new piece of syntax (as opposed to a
function). syntax-rules introduces a pattern-matcher (for now, ignore what the () means: but
you do need to include it). Each rule, in brackets, is a pattern and output: if the input matches
the pattern, then the desugarer (here called a macro expander) produces the corresponding
output, but with the names in the pattern (here, C, T, and E) copied as program source into the
output. Thus, given

(strict-if true 1 (/ 1 9))
the above macro definition transforms it into

(if (boolean? true)

73

(if true 1 (/ 1 9))
(error 'strict-if "expected a boolean"))

which then evaluates exactly as we’d expect.

1 |
One nice feature of Racket is the Macro Stepper (Macm Stepper). It shows the program

expanding step-by-step, which is useful both for understanding macros and debugging them. If
necessary, change the “Macro hiding” option at the bottom-left to read “Standard”.

Exercise: Try it out with the above macro definition and use. See what you get. Observe
how, at each step, it highlights the macro use about to be expanded followed by the result
of that expansion.

Note: The Macro Stepper is not an evaluator. It does not show the steps of evaluation,

only the steps of expansion! Thus, if you write a program that will produce an error at
run-time, the Macro Stepper does not show that error. It only shows syntax errors.

Local Binding

Now let’s look at the 1et bindings we’ve been using until now. Imagine we want to extend
Racket with a 1let1 construct: for example, we want

(letl (x 3) (+ x x))
to evaluate to 6.
Do Now: Can let1 be defined as a function? Why or why not?

letl can’t be a function. If it were, we would first try to evaluate each of the sub-terms as
arguments. There are two things here that look like argument expressions: (x 3) and (+ x x).
Suppose we try to evaluate (x 3). First of all, it looks like an application. Second, x isn’t even
bound. Third, there is no meaningful “value” it could produce: its only job is instead to bind x.
No, let1 is also a new piece of syntax.

Terminology: We will often refer to these new pieces of syntax as constructs (as in, “a
new language construct”). In the Lisp/Scheme/Racket community, these are sometimes
also called special forms, because they are syntactic forms with their own special rules

for binding and evaluation.

From now on we’ll use the prefix my- on our macros, because we don’t want to clash with the
names of macros already built into Racket.

From what we’ve seen above, we can probably figure out half of the macro for my-1let1:

74

efine-syntax my-letl
(defi 1
(syntax-rules ()
[(my-letl (var val) body)

1))

But what would it expand into? We certainly could just expand it into the existing let construct
in Racket, but there’s another interesting option.

Let’s think about what my-1et1 does: it binds a name to a value, and then immediately
evaluates its body in an environment extended by its name. Now, can we think of anything else
that binds names to values? Yes, functions. And functions evaluate a body in an extended
environment. When do functions evaluate their body? When they are applied to an argument.
Therefore, we can express my-1letl in terms of an anonymous function that is applied
immediately:

(define-syntax my-letl
(syntax-rules ()
[(my-letl (var val) body)
((lambda (var) body) val)]))

Sure enough,
(my-letl (x 3) (+ x X))
will produce 6. Use the Macro Stepper to see how!

Terminology: This pattern, of an anonymous function that is used right away, is
commonly called left-left-lambda (where “left” stands for left-parenthesis). For a long
time this remained an obscure term in the Lisp/Scheme community. But JavaScript
made this pattern popular again under the name Immediately Invoked Function
Expression (IIFE), because of problems with the handling of scope in earlier versions of
the language. If you think the parentheses look bad here, look up some examples of IIFE
on the Web.

Exercise: Suppose we make a mistake in the macro and swap two parts:
(define-syntax my-letl
(syntax-rules ()
[(my-letl (var val) body)
((lambda (var) val) body)]))

What happens when we try to evaluate

75

(my-letl (x 3) (+ X X))

? Use the Macro Stepper to see what happened.
Binding More Locals

As we have noticed in Racket, however, the 1et can bind many names at once, not only one. It
becomes clear how: the function takes formal arguments, and is applied to just as many actual
arguments. There can be as many as we want! But how do we express this in macro syntax?

In mathematics, it’s common to use ellipses (...) to denote a sequence of arbitrary length.
Therefore, it would be nice if we could write something like this:

(define-syntax my-let2
(syntax-rules ()
[(my-1let2 ([var val] ...) body)
((lambda (var ...) body) val ...)]))

This would say, my-1et2 is followed by any number of var-val pairs, followed by a body. Turn
that into a 1lambda with all the vars as formal arguments, whose body is body, applied to all the
same vals as the actual argument expressions. We would use it like so (the extra parens are to
help us group the bindings):

(my-let2 ([x 3] [y 4]) (+ xy))

In fact, that is exactly the syntax supported by Racket! Try out the above program: run it, and
also examine it in the Macro Stepper!

Multi-Armed Conditionals

Here’s one last example that clarifies what ... means: it means “zero or more instances of the
preceding pattern”. Using it, we can define our own multi-armed conditional. Suppose we want
to define a function called sign that produces a string based on the sign of a number:

(define (sign n)
(my-cond
[(< n @) "negative"]
[(= n @) "zero"
[(> n @) "positive"]))

Again, it’s clear that my-cond can’t be a function; we need to extend the language with a new
construct, using a macro.

76

How many arms should our multi-armed conditional have? As many as the programmer wants,
of course. We'll further stipulate that if we have exhausted all the questions and none has
yielded a true value, the “falling through” produces an error.

Thus, we want to peel off the first question-answer pair and evaluate the question. If it succeeds,
we evaluate the answer. Otherwise, we want to recur on the remaining questions...which is
essentially a smaller instance of my-cond. (That’s right, we’re recurring on syntax now!)

Since ... means “zero or more”, we end up with a pattern where we repeat a pattern: the first
copy peels off the first instance, while the second, followed by a ..., captures all the remaining
instances:

(define-syntax my-cond
(syntax-rules ()
[(my-cond) (error 'my-cond "should not get here")]
[(my-cond [g0 a@] [ql al] ...)
(if g0
ao
(my-cond [ql al] ...))]))

Exercise: Examine this code in detail. Try out the example above. It’s essential that you
run this through the Macro Stepper: you’ll learn a lot about macros from this example!

77

More on Macros

Note: All the examples from this chapter you can find in a video on YouTube, so if you
prefer, you can watch that instead: ® More on Macros . Be sure to stop and reflect after
each example, and try each of them out for yourself!

Now let’s start to look at various idiomatic aspects of using Racket macros. We’ll want this
understanding under our belt because we’ll make use of several of these features. Here are five
concrete things we’ll see:

- A convenience in definitions

- A major and critical macro feature

- Animportant idiom in truthy/falsy languages
- A peril in macro definitions

- A push to generalize definitions

A Definitional Convenience

Supposing we want to define a “one-armed if” (e.g., useful for checking erroneous conditions
and proceeding only if the coast is clear): this is commonly called unless. We can write it this
way:

(define-syntax unless
(syntax-rules ()
[(_ cond body ...)
(if (not cond)
(begin
body
ce)
(void))1))

For instance, we can use it this way:
(unless false
(println 1)
(println 2))
Notice that in the pattern, we don’t have to repeat the "unless"; we can just use an *_ " instead.
Aside: The full truth is, this isn’t just a convenience. They actually do slightly different

things that you can detect in subtle situations. You can safely, and should, just use _
instead of repeating the name of the macro.

78

https://youtu.be/2FK6jpAcX9Q

Name Capture

But now, what if we use the above code in this kind of context:

(let ([not (A (v) v)])
(unless false
(println 1)
(println 2)))

This seems problematic: it seems to expand into

(let ([not (A (v) V)])
(if (not false)
(begin
(println 1)
(println 2))

(void)))

which is pretty much the opposite of what we want. That’s because the not outside the macro

seems to have captured the not inside the macro. This is roughly analogous to dynamic scope:
any use context can modify what happens inside the abstraction. If this were true, it would be

terrifying to be a macro writer!

Do Now: Run both versions. Do they produce the same answer?

But running the macro version makes clear that the name not is not being captured. Most of all,
use the Macro Stepper to see how the expansion works. The important thing is that variables are
more than just names; they record binding information, which keeps names introduced in
different settings separate. They may print the same way, but internally Racket keeps them
separate (and shows this separation in the Macro Stepper using colors). That is, it’s as if we start
with this program:

(let ([not (A (v) V)])
(unless false
(println 1)
(println 2)))

which, after expansion, turns into this program:
(let ([not (A (v) V)])
(if (not false)

(begin
(println 1)

79

(println 2))
(void)))

So now we can easily keep the identifiers apart: the red not is different from the blue not. The
actual internal representation is an efficient analog to colors. If necessary, the macro expander
can also use distinct fresh (i.e., previously unused) names—not1, not2, etc.—to represent the
different variables of the same name.

This property, which recovers an analog of static scoping for macros, and is called hygiene.
Hygiene is a critical feature for macros (and, notably, is one not given by the C pre-processor). It
lets programmers use whatever name they want in the macro definition without worrying about
what names will be bound in the use context; and similarly, lets users use whatever variable
names they want without worrying about the macro’s code.

That said, you may wonder whether hygiene is just for built-in functions like not. We’ll see that
it’s not. But to get there, we’ll work through some other idiomatic examples.

A Truthy/Falsy Idiom

Unrelated to macros, here’s something we often see in truthy/falsy languages. Consider a
two-arm or, which we can define as a macro:

(define-syntax or-2
(syntax-rules ()

[(_ el e2)

(if e1
true
e2)]))

This works well enough for

(or-2 true false)
(or-2 false false)
(or-2 false true)

However, consider a function like member:

(member 'y '(xy z))

When it succeeds, it doesn’t just return true, it returns the entire rest of the list (which is a
truthy value). But if we combine this with or-2:

(or-2 (member 'y '(x y z)) "not found")

8o

This is clearly not the result we want: we’ve lost the useful return value. Instead, here’s a

different macro that returns rather than suppressing that result:
(define-syntax or-2
(syntax-rules ()
[(_ el e2)
(if el
el
e2)]))

This makes
(or-2 (member 'y '(x y z)) "not found")

work as expected.

A Macro Definition Peril

However, this macro contains a subtle (almost hidden), important peril. Consider this example:

(or-2 (print "hello") "not found")
That also returns a truthy value, but now we see the print twice. So we need
(define-syntax or-2
(syntax-rules ()
[(_ el e2)
(let ([v el])
(if v v e2))]))

Exercise: Confirm that this produces the correct answer.
Back to Hygiene

This now works fine for the printing example. But now we have to worry about

(let ([v 11)
(or-2 false v))

Using fresh names, there are two things this could expand into:

81

(let ([v 1])
(let ([v false])
(if v
%

v)))

(let ([ve 1])
(let ([v1l false])
(if va
vl
ve)))

Which does the macro version produce? That’s right, the latter: the one corresponding to

(let ([v 1])
(let ([v false])
(if v
v

v)))

In other words, hygiene works just as well for local variables, not just for built-in functions! In
other words, we have spent a whole bunch of time on something you don’t need to worry about.
In return, it means you can use names with impunity in your macro programs, just as you do
inside functions and methods because of static scoping.

Generalizing Macros

Finally, unlike the poor programmers stuck with their infix syntaxes and binary operators,
parenthetical syntax programmers can generalize constructs to arbitrary arity. We’ve seen ...
already; let’s put it to work here to create an n-ary or. A natural first definition is

(define-syntax orN
(syntax-rules ()
[(_ele2...)
(let ([v el])

(if vv (orNe2 ...))N1]))

Do Now: However, see what happens when we try:

(let ([v true])
(orN false v))

Okay, so that doesn’t work. It’s important to pay attention to the error message:

82

orN: bad syntax in: (orN)

This highlights the need for a base case. The problem is our definition above requires one or
more sub-expressions: el is the first, and e2 ... means zero or more from the second position
onward. But nothing covers the case of no sub-terms. So we need

(define-syntax orN
(syntax-rules ()
[() false]
[(_ele2...)
(let ([v el])
(if vv (orNe2 ...))1]))

and of course this works fine.
Exercise: The problem above appears to have been self-inflicted: why did we start with the
pattern (_ el e2 ...),which requires one-or-more (el is the first, e2 ... is zero or more)? We

should have just written (_ e...) instead, which would be zero-or-more! Rewrite the orN
macro using this pattern: can you make it work?

83

eccoe Objects XXX

Objects—the bundling of data with operations over them—are a generalization of closures.
Many languages have objects, but in a variety of different forms.

84

A Standard Model of Objects

Now we're ready to start looking at our first major language feature that goes beyond SMoL:
objects. Not all SMoL languages have objects; though many do, they have them in very different
ways. Nevertheless, what we will see is that there is a fairly uniform way to think about objects
across all these languages, and furthermore this way of thinking really builds on our
understanding of SMoL.

When building the essence of objects, though, we now have a choice: we can do it either in the
core or through syntactic sugar. The former is frustrating in several ways:
e We have to do more low-level bookkeeping (e.g., with environments) that may not
necessarily be instructive.
e The interpreter gets larger and more unwieldy, because all the new constructs go in the
same place rather than each being independent definitions.
e Most of all: it becomes a lot harder to write illustrative programs and tests, because the
core language may not have all the features we need to make this convenient.

In contrast, all these problems go away if we use syntactic sugar instead. Therefore, even though
a real implementation may well have at least parts of objects (especially the parts needed for
efficiency) in the core language, we are going to build objects entirely through desugaring, using
macros. In fact, in this book, we will do something even simpler: we will give concrete examples
of what programs desugar to. Figuring out the general desugaring will be left as an exercise for
you. To aid in that process, we will write code in as stylized a form as possible, not using any
short-cuts that might obscure the macro rules.

Note: The programs in this section cannot be written in the language plait. Instead, we
will use #lang racket, which does not perform static type-checking. Add the line

(require [only-in plait test print-only-errors])
at the top to access the testing operator and printing control parameter from plait.
Exercise: Spot the point at which the type-checker would become problematic. Hint:

The easiest way is, of course, to keep using #lang plait until you run into a problem.
Make sure you understand what the problem is!

What is an Object?

The central question we must answer, before we start thinking about implementations, is what
an object is. There is a lot of variation between languages, but they all seem to agree that an
object is

e avalue, that

85

e maps names to

e stuff: either other values or “methods”.
From a minimalist perspective, methods seem to be just functions, and since we already have
those in the language, we can put aside this distinction.

Terminology: We will use the term member to refer to a generic entry in an object,
when we don’t want to make a distinction between fields and methods.

How can we capture this? An object is just a value that dispatches on a given name. For
simplicity, we’ll use 1ambda to represent the object and Racket’s case construct to implement
the dispatching. Here’s an object that responds to either add1 or sub1, and in each case returns a
function that either increments or decrements:

(define o
(lambda (m)
(case m
[(add1l) (lambda (x) (+ x 1))]

[(subl) (lambda (x) (- x 1))1)))
We would use this as follows:
(test ((o 'addl) 5) 6)

Aside: Observe that basic objects are a generalization of 1ambda to have multiple
“entry-points”. Conversely, a 1ambda is an object with only one entry-point; therefore, it
doesn’t need a “method name” to disambiguate.

Of course, writing method invocations with these nested function calls is unwieldy (and is about
to become even more so), so we’d be best off equipping ourselves with a convenient syntax for

invoking methods:

(define (msg om . a)
(apply (o m) a))

This enables us to rewrite our test:
(test (msg o 'addl 5) 6)
Aside: We've taken advantage of Racket’s variable-arity syntax: . a says “bind all the

remaining—zero or more—arguments to a list named a”. The apply function “splices” in
such lists of arguments to call functions.

86

Observe something very subtle about our language: nothing precludes us from writing an
arbitrary expression in the second position of a call to msg. That is, we can compute which
member we want to access. For instance:

(test (msg o (first '(addl)) 5) 6)

This is unlike many languages with objects, which force you to write the literal name of the
member (e.g., in Java, in most cases). We'll return to this later!

Aside: This is a general problem with desugaring: the target language may allow
expressions that have no counterpart in the source, and hence cannot be mapped back to
it. Fortunately we don’t often need to perform this inverse mapping, though it does arise
in some debugging and program comprehension tools. More subtly, however, we must
ensure that the target language does not produce values that have no corresponding
equivalent in the source.

Now that we have basic objects, let’s start adding the kinds of features we’ve come to expect
from most object systems.

The “Object” Pattern

We can consolidate what we have written above as the “object” pattern: code that looks like

(lambda (m)
(case m
... dispatch on each of the members ...))

Constructors

A constructor is simply a function that is invoked at object construction time. We currently lack
such a feature, but by turning an object from a literal into a function that takes constructor
parameters, we achieve this effect:

(define (o-constr x)
(lambda (m)
(case m

[(addX) (lambda (y) (+ x y))1)))

(test (msg (o-constr 5) 'addX 3) 8)
(test (msg (o-constr 2) 'addX 3) 5)

87

In the first example, we pass 5 as the constructor’s argument, so adding 3 yields 8. The second is
similar, and shows that the two invocations of the constructors don’t interfere with one another
(just as we would expect from static scope).

The “Class” Pattern

We've actually made quite a momentous change with this small addition: we’ve gone from
objects to functions-that-make-objects (notice the object pattern inside the function). But
traditionally, what makes objects? Classes! And classes typically have constructors. So in the
process of introducing constructors, we have actually also shifted from objects to classes. The
“class” pattern, at its simplest, is:

(define (class constructor-params)
. the object pattern ...)

State

Many people believe that objects primarily exist to encapsulate state.

Aside: Curiously, Alan Kay, who won a Turing Award for inventing Smalltalk and
modern object technology, disagrees. In The Early History of Smalltalk, he says, “[t]he
small scale [motivation for OOP] was to find a more flexible version of assignment, and
then to try to eliminate it altogether”. He adds, “It is unfortunate that much of what is
called ‘object-oriented programming’ today is simply old style programming with fancier
constructs. Many programs are loaded with ‘assignment-style’ operations now done by
more expensive attached procedures.”

We certainly haven’t lost that ability. If we desugar to a language with variables, we can easily
have multiple methods mutate common state, such as a constructor argument:

(define (mk-o-state count)
(lambda (m)
(case m
[(inc) (lambda () (set! count (+ count 1)))]
[(dec) (lambda () (set! count (- count 1)))]
[(get) (lambda () count)])))

We have changed the name to mk-o-... to reflect the fact that this is an object-maker, i.e.,
analogous to a class. For instance, we can test a sequence of operations:

(test (let ([o (mk-o-state 5)])
(begin (msg o 'inc)

88

http://worrydream.com/EarlyHistoryOfSmalltalk/

(msg o 'inc)

(msg o 'dec)

(msg o 'get)))
6)

and also notice that mutating one object doesn’t affect another:

(test (let ([ol (mk-o-state 3)]
[02 (mk-o-state 3)])
(begin (msg ol 'inc)
(msg 01 'inc)
(+ (msg o1 'get)
(msg 02 'get))))
(+ 5 3))

Private Members

Another common object language feature is private members: ones that are visible only inside
the object, not outside it.

Aside: Except that, in Java, instances of other classes of the same type are privy to
“private” members. Otherwise, you would simply never be able to implement an Abstract
Data Type. Note that classes are not Abstract Data Types!

These may seem like an additional feature we need to implement, but we already have the
necessary mechanism in the form of locally-scoped, lexically-bound variables:

(define (mk-o-state/priv init)
(let ([count init])
(lambda (m)
(case m
[(inc) (lambda () (set! count (+ count 1)))]
[(dec) (lambda () (set! count (- count 1)))]

[(get) (lambda () count)]))))

The code above uses lexical scoping to ensure that count remains hidden to the world. Trying to
access count directly from the outside will fail.

A Refined “Class” Pattern

With this change, we can now refine our pattern for classes:

89

(define (class-w/-private constructor-params)
(let ([private-vars ...] ...)
. the object pattern ...))

which we can also write as:

(define class-w/-private
(lambda (constructor-params)
(let ([private-vars ...] ...)
. the object pattern ...)))

We’ll see in a moment why we might want to do this.
Static Members

Another feature often valuable to users of objects is static members: those that are common to
all instances of the same type of object. This, however, is merely a lexically-scoped identifier
(making it private) that lives outside the constructor (making it common to all uses of the
constructor).

Suppose we want to keep a count of how many instances of a kind of object are created. This
count cannot be inside any one of those objects, because they would not “know” about each
other; rather, the constructor needs to keep track of this. This is the role of static members, and
the variable counter plays this role in the following example:

(define mk-o-static
(let ([counter 9])
(lambda (amount)
(begin
(set! counter (+ 1 counter))
(lambda (m)
(case m
[(inc) (lambda (n) (set! amount (+ amount n)))]
[(dec) (lambda (n) (set! amount (- amount n)))]
[(get) (lambda () amount)]
[(count) (lambda () counter)]))))))

We've written the counter increment where the “constructor” for this object would go, though it
could just as well be manipulated inside the methods.

To test it, we should make multiple objects and ensure they each affect the global count:

(test (let ([o (mk-o-static 1000)])

90

(msg o 'count))
1)

(test (let ([o (mk-o-static 9)])
(msg o 'count))
2)

It is productive to see how this program runs through the Stacker. For simplicity, we can ignore
most of the details and focus just on the core static pattern. Here is a Stacker-friendly

translation:
#lang stacker/smol/hof

(defvar mk-o-static
(let ([counter 9])
(lambda (amount)
(begin
(set! counter (+ 1 counter))
(lambda (m)
(if (equal? m "get")
(lambda () amount)
(if (equal? m "count")
counter
(error "no such member"))))))))

(defvar 01 (mk-o-static 1000))
(defvar 02 (mk-o-static 0))
(o1l "count")

(02 "count")

Run this and see how the static member works!

A Re-Refined “Class” Pattern

Now we can refine our pattern for classes even further:

(define class-w/-private&static
(let ([static-vars ...] ...)
(lambda (constructor-params)
(let ([private-vars ...] ...)
. the object pattern ...))))

Put differently:

(define class-w/-private&static
(let ([static-vars ...] ...)
. the class-w/-private pattern ...))

Exercise: Statics, as defined here, are accessed through objects. However, statics by
definition belong to a class, not to objects, and hence should be accessible through the
class itself—for instance, even if no instances of the class have ever been created. (In the
working example above, one should be able to access the count when it is still ©.) Modify
the pattern above to respect this by making static members be accessible directly through
the class rather than through objects.

Objects with Self Reference

Until now, our objects have simply been packages of named functions: functions with multiple
named entry-points, if you will. We’ve seen that many of the features considered important in
object systems are actually simple patterns over functions and scope, and have indeed been
used—without names assigned to them—for decades by programmers armed with lambdas.

What this means is that the different members are actually independent of each other: they
can’t, for instance, directly reference one another. This is too limiting for a true object system,
where a method has a way of referencing the object it is part of so that it can use other members
of that object. To enable this, many object systems automatically equip each object with a
reference to itself, often called self or this. Can we implement this?

Aside: I prefer this slightly dry way of putting it to the anthropomorphic “knows about
itself” terminology often adopted by object advocates. Indeed, note that we have gotten
this far into object system properties without ever needing to resort to
anthropomorphism.

Self-Reference Using Mutation

Yes, we can! This relies on a pattern that sets up the name for the recursive reference, then uses
that to create the body that will employ the recursion, and finally uses mutation to make the
name refer to the defined body. For simplicity, we will go back to the object pattern, ignoring the
class-related features:

(define o-self!
(let ([self 'dummy])

(begin
(set! self
(lambda (m)
(case m

92

[(first) (lambda (x) (msg self 'second (+ x 1)))]
[(second) (lambda (x) (+ x 1))1)))
self)))

We can test it by having first invoke second. Sure enough, this produces the expected answer:
(test (msg o-self! 'first 5) 7)

Here is the above program translated into the simpler smol/fun language. Once translated, we
can run it in the Stacker:

#lang stacker/smol/hof

(defvar o-self!
(let ([self ©])

(begin
(set! self
(lambda (m)
(if (equal? m "first")
(lambda (x) ((self "second") (+ x 1)))
(if (equal? m "second")
(lambda (x) (+ x 1))
(error "no such member")))))
self)))

((o-self! "first") 5)
Run it for yourself! What do you learn from it? Do you see how self works?

Exercise: This change to the object pattern is essentially independent of the class
pattern. Extend the class pattern to include self-reference.

Self-Reference Without Mutation

There’s another pattern we can use that avoids mutation, which is to send the object itself as a
parameter:

(define o-self-no!
(lambda (m)
(case m
[(first) (lambda (self x) (msg/self self 'second (+ x 1)))]
[(second) (lambda (self x) (+ x 1))])))

93

Each method now takes self as an argument. That means method invocation must be modified
to follow this new pattern:

(define (msg/self om . a)
(apply (o m) o a))

That is, when invoking a method on o, we must pass o as a parameter to the method. Notice that
we did not do any such thing when invoking a function! This distinguishes functions and
methods.

Obviously, this approach is dangerous because we can potentially pass a different object as the
“self”’. Exposing this to the developer is therefore probably a bad idea; if this implementation
technique is used, it should only be done in desugaring. (Unfortunately, Python exposes exactly
this in its surface syntax.) Sure enough:

(test (msg/self o-self-no! 'first 5) 7)
Dynamic Dispatch

Finally, we should make sure our objects can handle a characteristic attribute of object systems,
which is the ability to invoke a method without the caller having to know or decide which object
will handle the invocation.

Suppose we have a binary tree data structure, where a tree consists of either empty nodes or
leaves that hold a value. In traditional functions, we are forced to implement some form of
conditional—such as a type-case—that exhaustively lists and selects between the different
kinds of trees. If the definition of a tree grows to include new kinds of trees, each of these code
fragments must be modified.

Dynamic dispatch solves this problem by making that conditional branch disappear from the
user’s program and instead be handled by the method selection code built into the language. The
key feature that this provides is an extensible conditional. This is one dimension of the
extensibility that objects provide.

Let’s first define our two kinds of tree objects:

(define (mt)
(let ([self 'dummy])

(begin
(set! self
(lambda (m)
(case m

[(sum) (lambda () ©)])))

94

self)))

(define (node v 1 r)
(let ([self 'dummy])

(begin
(set! self
(lambda (m)
(case m
[(sum) (lambda () (+ v

(msg 1 'sum)
(msg r "sum)))1)))

self)))

With these, we can make a concrete tree:

(define a-tree
(node 10
(node 5 (mt) (mt))
(node 15 (node 6 (mt) (mt)) (mt))))

And finally, test it:
(test (msg a-tree 'sum) (+ 10 5 15 6))

Observe that both in the test case and in the sum method of node, there is a reference to > sum
without checking whether the recipient is a mt or node. Instead, the language’s run-time system
extracts the recipient’s sum method and invokes it. This conditional missing from the user’s
program, and handled automatically by the language, is the essence of dynamic dispatch.

It’s worth noting that we didn’t have to change our pattern to add dynamic dispatch; it simply
followed as a result of the rest of the design.

Aside: This property—which appears to make systems more black-box extensible
because one part of the system can grow without the other part needing to be modified to
accommodate those changes—is often hailed as a key benefit of object-orientation. While
this is indeed an advantage objects have over functions, there is a dual advantage that
functions have over objects, and indeed many object programmers end up contorting
their code—using the Visitor pattern—to make it look more like a function-based
organization. Read Synthesizing Object-Oriented and Functional Design to Promote
Re-Use for a running example that will lay out the problem in its full glory. Try to solve it
in your favorite language, and see the Racket solution.

95

http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.utah.edu/plt/publications/icfp98-ff/paper.shtml

What Else do Objects Have?

Member Name Design Space

Now we will focus on the names of members (a term we use to not distinguish between fields
and methods). Also, let’s set aside the distinction between classes and objects for a moment:
whether through classes or not, we eventually end up with objects, which programs use. So the
two questions are:

e Isthe set of member names statically fixed, or can it be changed dynamically?
e Isthe member being accessed at a point statically fixed, or can it be computed
dynamically?

This gives us a 2x2 table, and it’s worthwhile to ask whether each cell makes sense (and whether
we’ve seen it in any real languages). We get:

Name is Static Name is Computed

Fixed Set of Members | As in base Java. As in Java with reflection to
compute the name.

Variable Set of Members | Difficult to envision (what Most “scripting” languages.
use would it be?).

Only one case does not quite make sense: if the member being accessed must be fixed in the
source program, then the set of names is pre-decided, so it doesn’t seem to make sense to be
able to dynamically change the set of members (new members would not be accessible, while
deleted members would cause some existing accesses might fail). All other points in this design
space have, however, been explored by languages.

The lower-right quadrant corresponds closely with languages that use hash-tables to represent
objects. Then the name is simply the index into the hash-table. Some languages carry this to an
extreme and use the same representation even for numeric indices, thereby (for instance)
conflating objects with dictionaries and even arrays. Even when the object only handles
“member names”, this style of object creates significant difficulty for type-checking and is hence
not automatically desirable.

Therefore, in the rest of this section, we will stick with “traditional” objects that have a fixed set

of names and even static member name references (the top-left quadrant). Even then, we will
find there is much, much more to study.

96

What (Goes In) Else?

Until now, our case statements have not had an else clause. One reason to do so would be if we
had a variable set of members in an object, though that is probably better handled through a
different representation than a conditional: a hash-table, for instance, as we've discussed above.
In contrast, if an object’s set of members is fixed, desugaring to a conditional works well for the
purpose of illustration (because it emphasizes the fixed nature of the set of member names,
which a hash table leaves open to interpretation—and also error). There is, however, another
reason for an else clause, which is to “chain” control to another, parent, object. This is called
inheritance.

Let’s return to our model of desugared objects. To implement inheritance, the object must be
given “something” to which it can delegate method invocations that it does not recognize. A
great deal will depend on what that “something” is.

One answer could be that it is simply another object:
(case m
[else (parent-object m)])

Due to our representation of objects, this application effectively searches for the member in the
parent object (and, presumably, recursively in its parents). If a member matching the name is
found, it returns through this chain to the original call in msg that sought the member. If none is
found, the final object presumably signals a “message not found” error.

Exercise: If you know what an 1-value is, then you might notice that the application
(parent-object m) is like “half a msg”, just like an I-value was “half a value lookup”. Is
there any connection?

Let’s try this by extending our trees to implement another method, size. We'll write an
“extension” (you may be tempted to say “sub-class”, but hold off for now!) for each node and mt
to implement the size method. We intend these to extend the existing definitions of node and
mt, so we'll use the extension pattern described above. In other words, if we previously had the
rough equivalent of this Java code:

class Mt { ... Mt() { ... }sum() { ...

}}
class Node { ... Node(v, 1, r) { ... } sum() { ... } }

now we want to extend it:

class MtSize extends Mt { ... size() { ... } ... }
class NodeSize extends Node { ... size() { ... } ... }

97

Aside: We're not editing the existing definitions because that is supposed to be the
whole point of object inheritance: to reuse code in a black-box fashion. This also means
different parties, who do not know one another, can each extend the same base code. If
they had to edit the base, first they have to find out about each other, and in addition,
one might dislike the edits of the other. Inheritance is meant to sidestep these issues
entirely.

Aside: Relatedly, read about the fragile base class problem.

A Java Excursion

Let’s first understand what’s going on in Java. For simplicity, let’s use a canonical “2d point” and
“3d point” example. We'll start with this class:

class Pt2 {
Pt2(int x, int y) {
System.out.println("Pt2 with " + x +
}

and " + vy);

We can make instances of it easily enough:

class Main {
public static void main(String[] args) {
Pt2 p2 = new Pt2(1, 2);
}

and this prints the expected output. Now suppose we extend this class:

class Pt3 extends Pt2 {
Pt3(int x, int y, int z) {
System.out.println("Pt3 with " + z);
}

This won’t even compile. We will get a somewhat strange-looking error. The error is because
Java is expecting to make an instance of Pt2 as well, but we have not told it how to. In the
absence of anything else, it invokes a “default constructor”, which takes no parameters (because
Java has no way of knowing which parameters to pass). If we modify Pt2 to instead be

98

https://en.wikipedia.org/wiki/Fragile_base_class

class Pt2 {
Pt2() {

System.out.println("default constructor");

}
Pt2(int x, int y) {
System.out.println("Pt2 with " + x +
}

and " + y);

then we find that the program compiles and, if we change Main suitably,

class Main {
public static void main(String[] args) {
Pt3 p3 = new Pt3(1, 2, 3);
}
}

it runs, but perhaps without the effect we were expecting. The solution, in Java terms, is to
explicitly invoke the constructor of the super-class:

class Pt3 extends Pt2 {
Pt3(int x, int y, int z) {
System.out.println("Pt3 with " + z);
super(x, y);

}

but this won’t work either: Java expects the super invocation to be the first thing in the
sub-class’s constructor.

As the error message above reveals, hidden in the constructor of the extended class is lurking
something important: it tries to create an instance of the super-class, just as if we had written
new Pt2. This is entirely masked by the syntactic sugar of super. The actual Pt2 instance is
hidden out of sight, and it takes a little effort to coax it into view.

To see it, let’s first add some instance variables:

class Pt2 {
public int x;
Pt2(int x, int y) {
this.x = x - 3;
System.out.println("Pt2 with " + x +
}

and " + y);

99

class Pt3 extends Pt2 {
public int x;
Pt3(int x, int y, int z) {
super(x, y);
this.x = x + 7;
System.out.println("Pt3 with " + z);
}

We've purposely made the instance variables have values that look different from those of the
parameters, so that when we try to examine them, we can tell them apart. Now let’s modify the
constructor to make two objects:

class Main {
public static void main(String[] args) {
Pt3 p3345 = new Pt3(3, 4, 5);
Pt3 p3678 = new Pt3(6, 7, 8);
}

Two objects...how many objects did we really make? Well, we made at least two, because adding

System.out.println(p3345.x);
System.out.println(p3678.x);

to the constructor shows that there are two different objects with two different values for x. So
far, so unsurprising.

However, I've claimed that there are two more objects, of type Pt2. Can we see them? Yes, in
fact, we can. The problem is that they're of type Pt2, and what we have are Pt3 objects. We can’t

just make a Pt2, because that doesn’t reveal the hidden Pt2. But in fact the Java type system lets
us get to the Pt2 by casting:

System.out.println(((Pt2)p3345).x);
System.out.println(((Pt2)p3678).x);

And that’s how we can see that there are actually two Pt2 objects lurking as well!
Extending Classes

Now we have to port all this code over to our world of desugaring. Is this the constructor
pattern?

100

(define (node/size parent-object v 1 r)

)

That suggests that the parent is at the “same level” as the object’s constructor fields. That seems
reasonable, in that once all these parameters are given, the object is “fully defined”. However, we
also still have

(define (node v 1 r)

-)

The crucial issue here is that we need to make two objects: one of node/size and one more of
node. We could imagine a protocol where the user of node/size constructs a node object and
passes it to node/size, but in doing so, they could make any number of mistakes. Alternatively,
we can leave it to node/size to invoke node, and keep track of the object constructed through
this process. That is, node/size’s parent parameter should not be the parent object but rather
the parent object’s maker-.

(define (node/size parent-maker v 1 r)
(let ([parent-object (parent-maker v 1 r)]
[self 'dummy])

(begin
(set! self
(lambda (m)
(case m
[(size) (lambda () (+ 1
(msg 1 'size)
(msg r 'size)))]
[else (parent-object m)])))
self)))

(define (mt/size parent-maker)
(let ([parent-object (parent-maker)]
[self 'dummy])

(begin
(set! self
(lambda (m)
(case m
[(size) (lambda () 0)]
[else (parent-object m)])))
self)))

Then the object constructor must remember to pass the parent-object maker on every
invocation:

101

(define a-tree/size
(node/size node
10
(node/size node 5 (mt/size mt) (mt/size mt))
(node/size node 15
(node/size node 6 (mt/size mt) (mt/size mt))
(mt/size mt))))

Aside: Note the repeated pattern of invoking the “super” class: e.g., (mt/size mt). We
would instead want to do this just once. Essentially, this binding of mt/size tomt is
precisely what the extends clause of Java does. We could simulate that here, but later in
this chapter we’ll see a much more elegant way of achieving this end while also making
programming with classes much more flexible.

We can confirm that both the old and new tests still work:

(test (msg a-tree/size 'sum) (+ 10 5 15 6))
(test (msg a-tree/size 'size) 4)

Exercise: Rewrite this block of code using self-application instead of mutation.

What we have done is capture the essence of a class. Each function parameterized over a parent
is...well, it’s a bit tricky, really. Let’s call it a class extension—we’ll soon see why. A class
extension corresponds to what a Java programmer defines when they write:

class NodeSize extends Node { ... }
Exercise: So why are we going out of the way to not call it a “class”?

When a developer invokes a Java class’s constructor, it in effect constructs objects all the way up
the inheritance chain (in practice, a compiler might optimize this to require only one constructor
invocation and one object allocation). These are effectively “personal” copies of the objects
corresponding to the parent classes (personal, that is, up to the presence of static members).
There is, however, a question of how much of these objects is visible. Java chooses that—unlike
in our implementation above—only one method of a given name (and signature) remains, no
matter how many there might have been on the inheritance chain, whereas every field remains
in the result, and can be accessed by casting. The latter makes some sense because each field
presumably has invariants governing it, so keeping them separate (and hence all present) is
wise. In contrast, it is easy to imagine an implementation that also makes all the methods
available, not only the ones lowest (i.e., most refined) in the inheritance hierarchy. Many
scripting languages take the latter approach.

102

Exercise: The code above is not what we would really want as programmers. The
self-reference is to the same syntactic object, whereas it needs to refer to the
most-refined object: this is known as open recursion. Modify the object representations
so that self always refers to the most refined version of the object. Hint: You will find the
self-application method (Self-Reference Without Mutation) of recursion handy.

Aside: This demonstrates the other form of extensibility we get from traditional objects:
extensible recursion.

Extending Prototypes

In our description above, we’ve supplied each class with a description of its parent class. Object
construction then makes instances of each as it goes up the inheritance chain. There is another
way to think of the parent: not as a class to be instantiated but, instead, directly as an object
itself. Then all children with the same parent would observe the very same object, which means
changes to it from one child object would be visible to another child. The shared parent object is
known as a prototype.

Aside: The archetypal prototype-based language is Self. Though you may have read that
languages like JavaScript are “based on” Self, there is value to studying the idea from its
source, especially because Self presents these ideas in their purest form.

Some language designers have argued that prototypes are more primitive than classes in that,
with other basic mechanisms such as functions, one can recover classes from prototypes—but
not the other way around. That is essentially what we have done above: each “class” function
contains inside it an object description, so a class is an object-returning-function. Had we
exposed these as two different operations and chosen to inherit directly an object, we would
have something akin to prototypes.

Exercise: Modify the inheritance pattern above to implement a Self-like,
prototype-based language, instead of a class-based language. Because classes provide
each object with distinct copies of their parent objects, a prototype-language might
provide a “clone” operation to simplify creation of the operation that simulates classes
atop prototypes.

Multiple Inheritance

Now you might ask, why is there only one fall-through option? It’s easy to generalize this to
there being many, which leads naturally to multiple inheritance. In effect, we have multiple
objects to which we can chain the lookup, which of course raises the question of what order in
which we should do so.

103

http://selflanguage.org/

It would be bad enough if the ascendants were arranged in a tree, because even a tree does not
have a canonical order of traversal: take just breadth-first and depth-first traversal, for instance
(each of which has compelling uses). Worse, suppose a blob A extends B and C; but now suppose
B and C each extend D. Now we have to confront this question: will there be one or two D
objects in the instance of A? Having only one saves space and might interact better with our
expectations, but then, will we visit this object once or twice? Visiting it twice should not make
any difference, so it seems unnecessary. But visiting it once means the behavior of one of B or C
might change. And so on. As a result, virtually every multiple-inheritance language is
accompanied by a subtle algorithm merely to define the lookup order.

This infamous situation is called the “diamond problem” (or even, “the Deadly Diamond of
Death™!). If you choose to include multiple inheritance in your language you can lose yourself for
days in design decisions on this. Because it is highly unlikely you will find a canonical answer,
your pain will have only begun. Multiple inheritance is only attractive until you’ve thought it
through.

Class Extensions: Mixins and Traits

When we write class in Java, what are we really defining between the opening and closing
braces? It is not the entire class: that depends on the parent that it extends, and so on
recursively. Rather, what we define inside the braces is a class extension. It only becomes a
full-blown class because we also identify the parent class in the same place.

Naturally, we should ask: Why? Why not separate the act of defining an extension from
applying the extension to a base class? That is, suppose instead of

class C extends B { ... }

we instead write:

classext E { ... }

and separately

class C = E(B)

where B is some already-defined class?

Thus far, it looks like we’ve just gone to great lengths to obtain what we had before. However,
the function-application-like syntax is meant to be suggestive: we can “apply” this extension to

several different base classes. Thus:

class C1 = E(B1);

104

https://en.wikipedia.org/wiki/Multiple_inheritance

class C2 = E(B2);

and so on. What we have done by separating the definition of E from that of the class it extends
is to liberate class extensions from the tyranny of the fixed base class. We have a name for these
extensions: they’re called mixins.

Mixins make class definition more compositional. They provide many of the benefits of
multiple-inheritance (reusing multiple fragments of functionality) but within the aegis of a
single-inheritance language (i.e., no complicated rules about lookup order). Observe that when
desugaring, it’s actually quite easy to add mixins to the language. A mixin is just a “function over
classes”. Because we have already determined how to desugar classes, and our target language
for desugaring also has functions, and classes desugar to expressions that can be nested inside
functions, it becomes almost trivial to implement a simple model of mixins.

Aside: This is a case where the greater generality of the target language of desugaring
can lead us to a better construct, if we reflect it back into the source language.

In a typed language, a good design for mixins can actually improve object-oriented
programming practice. Suppose we're defining a mixin-based version of Java. If a mixin is
effectively a class-to-class function, what is the “type” of this “function”? Clearly, mixins ought to
use interfaces to describe what they expect and what they provide. Java already enables (but
does not require) the latter, namely classes can say what interfaces they provide. However, it
does not enable the former, namely specifying its parent as an interface: a class (extension) in
Java extends its parent class—with all the parent’s members visible to the extension—rather
than an interface that stands for the parent (or any other class that matches that same
interface). That means it obtains all of the parent’s behavior, not a specification thereof. In turn,
if the parent changes, the class might break. Mixins help break this asymmetry between
extension and provision.

In a mixin language, we can instead write

mixin M extends I1 implements I2 { ... }

where I1 and I2 are interfaces. Then M can only be applied to a class that satisfies the interface
I1, and in turn the language can ensure that only members specified in I1 are visible in M. This
becomes directly analogous to how a client of M can only see what is provided by I2, and follows

one of the important principles of good software design:

Quote: “Program to an interface, not an implementation.” —Design Patterns

In short, a mixin is a class that has been turned into a function over parent classes:

M:: I1 -> I2

105

https://en.wikipedia.org/wiki/Design_Patterns

A good design for mixins can go even further. A class can only be used once in an inheritance
chain, by definition (if a class eventually referred back to itself, there would be a cycle in the
inheritance chain, causing potential infinite loops). In contrast, when we compose functions, we
have no qualms about using the same function twice (e.g.: (map ... (filter ... (map
...)))). Is there value to using a mixin twice?

Aside: There certainly is! See sections 3 and 4 of Classes and Mixins.

Mixins solve an important problem that arises in the design of libraries. Suppose we have a
dozen different features which can be combined in different ways. How many classes should we
provide? Furthermore, not all of these can be combined with each other. It is obviously
impractical to generate the entire combinatorial explosion of classes. It would be better if the
developer could pick and choose the features they care about, with some mechanism to prevent
unreasonable combinations. This is precisely the problem that mixins solve: they provide the
class extensions, which the developers can combine, in an interface-preserving way, to create
just the classes they need.

Aside: Mixins are used extensively in the Racket GUI library. For instance,
color:text-mixin consumes basic text editor interfaces and implements the colored
text editor interface. The latter is itself a basic text editor interface, so additional basic
text mixins can be applied to the result.

Exercise: How does the analogous library in your favorite object-oriented language
solve this same problem?

Mixins do have one limitation: they enforce a linearity of composition. This strictness is
sometimes misplaced, because it puts a burden on programmers that may not be necessary. A
generalization of mixins called traits says that instead of extending a single mixin, we can
extend a set of them. Of course, the moment we extend more than one, we must again contend
with potential name-clashes. Thus traits must be equipped with mechanisms for resolving name
clashes, often in the form of some name-combination algebra. Traits thus offer a nice
complement to mixins, enabling programmers to choose the mechanism that best fits their
needs. As a result, Racket provides both mixins and traits.

106

http://www.cs.brown.edu/~sk/Publications/Papers/Published/fkf-classes-mixins/

(XXX X Types (XXX X

Types that are checked before program execution—what are known as static types—are a vital
part of programming, and a growing number of languages either have them from the start or,
realizing their importance, are adding them in various forms. Types are a common first step
towards proving properties about programs. If you use a typed language, you write small
proofs about your programs every day, whether you realize it or not.

107

Introduction to Types

We're done with objects. Why weren’t objects in SMoL?

1. Not all languages have them.

2. The ones that do have them can’t seem to agree on the details (classes versus prototypes,
single- versus multiple-inheritance, classes versus traits and mixins, etc.). There’s very
little “standard” there.

3. We can add most notions through desugaring!

Now we move on to types. We will always use the term type to refer to a static check, i.e., one
that can be done purely with the program source. This means types cannot refer to dynamic
conditions, and may suffer from either false-positive or false-negative errors (e.g., something
that is in the code but can never run in practice may still cause a type error); in return, they give
us guarantees without ever having to run the program. This is important when the program is
expensive to run, impossible (e.g., it depends on conditions that can’t be reproduced by the
developer), or dangerous.

Types aren’t really a part of SMoL either, but not because we can add them through desugaring
(which we can’t); rather, it’s for the first two reasons: many languages don’t have them, and
those that do don’t often agree on their form (in large part because of their disagreement over
the nature of objects). However, there are parts they do (largely) agree on, which we will begin
with.

A Standard Model of Types

Types can be thought of as abstractions of run-time values. That is, whereas at run-time we can
have a very large number of numbers and strings and images (and two Booleans), we will
collapse the distinctions within these and preserve only the distinctions between them.
Therefore, it is instructive to start with a basic interpreter and try to build a type checker from
there:

(define-type BinOp
[plus])

(define-type Expr
[binE (operator : BinOp)
(left : Exp)
(right : Exp)]
[numE (value : Number)])

(calc : (Exp -> Number))

108

(define (calc e)
(type-case Exp e
[(binE o 1 r)
(type-case BinOp o
[(plus) (+ (calc 1) (calc r))])]
[(numE v) v]))

(test (calc (binkE (plus) (numE 5) (numE 6))) 11)

Now let’s see what needs to happen with a type-checker. The label on the tin says “checker”: that
is, the job of a type-checker is to pass judgment on programs, i.e., to determine whether or not
they are type-correct. Thus, a natural type (for the type checker) would be

(tc : (Exp -> Boolean))

(In practice, of course, we would want more information in case the program is not type-correct,
i.e., we’d like an error diagnostic. But we're ignoring human factors considerations here.) With
this type, we can now rewrite the relevant parts of the interpreter above:

(define (tc e)
(type-case Exp e
[(binE 0 1 r)
(type-case BinOp o
[(plus) (and (tc 1) (tc r))])]
[(numE v) #true]))

(test (tc (binE (plus) (numE 5) (numE 6))) #true)

Actually, let’s peer at this for a moment. Given a number, the type-checker returns #true. In the
recursive cases, it computes the and of type-checking the pieces. And that’s it. Since there is no
way to return #false, the entire type-checker must always only return #true. That is, every
program is type-correct.

The problem is because we have only one type, numbers, and only one operation, also on
numbers, so what could possibly go wrong? We need to extend the types and operations so that
there are meaningful possibilities for errors. Therefore, suppose we add a ++ operation that
concatenates strings.

(define-type BinOp
[plus] [++])

(define-type Expr
[binE (operator : BinOp)
(left : Exp)

109

(right : Exp)]
[numE (value : Number)]
[strE (value : String)])

Various things break, and need to be fixed. How about this?

(define (tc e)
(type-case Exp e

[(binE o 1 r)

(type-case BinOp o
[(plus) (and (tc 1) (tc r))]
[(++) (and (tc 1) (tc r))D)]

[(numE v) #true]

[(strE v) #true]))

(test (tc (binE (++) (strE "hello") (strE "world"))) #true)
So this looks pretty good, right?

Do Now: This is not at all what we want! Write a test case that demonstrates that.
Here are two tests that demonstrate desirable behavior:

(test (tc (binE (++) (numE 5) (numE 6))) #false)
(test (tc (binE (plus) (strE "hello") (strE "world"))) #false)

The first string-concatenates two numbers, the second adds two strings. Therefore, both should
be rejected by the type-checker. Yet both of them pass (i.e., the tests above fail).

What is the core problem here? It’s that, given an expression, we only know whether its
sub-expressions typed correctly, but not what their types are. That is insufficient to determine
whether the current expression is type-correct. For instance, the ++ operator needs to check not
only whether its two sub-expressions are well-typed, but also whether they produced strings; if
they did not, then the concatenation is erroneous.

What this shows is that we need the type-checker to have a richer type: it must instead be

(tc : (Exp -> Type))

That is, the type “checker” must actually be a type calculator, i.e., it even more closely parallels
the evaluator, just over the universe of abstracted values (types) rather than concrete ones.

Following convention, however, we’ll continue to call it a checker, because it also checks in the
process of calculating types.

110

In the type declaration above, Type is a new (plait type) definition that records the possible
types:

(define-type Type [numT] [strT])
With this, we can rewrite our type-“checker”:

(define (tc e)
(type-case Exp e
[(binE o 1 r)
(type-case BinOp o
[(plus) (if (and (numT? (tc 1)) (numT? (tc r)))
(numT)
(error 'tc "not both numbers"))]
[(++) (if (and (strT? (tc 1)) (strT? (tc r)))
(strT)
(error 'tc "not both strings"))])]
[(numE v) (numT)]
[(strE v) (strT)]))

(test (tc (binE (plus) (numE 5) (numE 6))) (numT))
(test (tc (binE (++) (strE "hello") (strE "world"))) (strT))

(test/exn (tc (binE (++) (numkE 5) (numE 6))) "strings")
(test/exn (tc (binkE (plus) (strE "hello") (strE "world"))) "numbers")

There are three take-aways from this:

1. The type-checker follows the same implementation schema as the interpreter: an

algebraic datatype to represent the AST, and structural recursion to process it. This is the

schema we’re calling SImP]I.
2. Atype-checker, unlike an interpreter, operates with “weak” values: note, for instance,

how the numE case ignores the actual numeric values. Both the strengths and weaknesses

of traditional type-checking arise from this ignorance.

3. In mathematical terms, the upgrade we performed in going from a type-checker to a
type-calculator was a process of strengthening the inductive hypothesis: instead of
returning only a Boolean, we had to return the actual type of each expression. This may
not seem like a literal strengthening; but it is inasmuch as the former #true has been
replaced by a Type and the #false by an error.

Exercise: Add division to the language and type-check it.

A Concise Notation

As we extend our type system, it is increasingly unwieldy to write everything out as code.
Instead, we will adopt a notation commonly used in the world of types (though it can also be
used for interpreters and other SImP] programs). We will write terms of the form

|- e : T

where the e are expressions, T are types, and : is pronounced as “has type”: i.e., the notation
above says “e has type T”. For now we won’t pronounce | - as anything at all; later, we will see
that it should be read as “proves”.

First, we can very concisely say that all numeric expressions have numeric type and all string
expressions have string type:

|- n : Num
|- s : Str

where n stands for all the syntactic terms with the syntax of numbers, and s likewise for strings.
(We can think of this as an infinite number of rules, one for each number and each string. We'’re
in the realm of mathematics, so what’s an infinite number of rules between friends?) The former
is exactly equivalent to writing

[(numC n) (numT)]
but much more concisely.
When we get to Booleans, we have a choice: we can either write

|- b : Bool

where b stands for all the syntactic terms with the syntax of Booleans, or—because there are only
two of them—just enumerate them explicitly:

|- true : Bool
| - false : Bool

Okay, so these correspond to the base cases of the type-checker. These are called axioms. Now
let’s get to the conditional cases, which are called (typing) rules. Remember our code for typing

addition:

[(plus) (if (and (numT? (tc 1)) (numT? (tc r)))
(numT)

112

(error 'tc "not both numbers"))]
We can write it in this notation very concisely as follows:
|- (+ el e2) : Num
We read the line as “if (what’s above) then (what’s below)”, and the space as “and”. So this says:
“if e1 has type Num and e2 has type Num, then (+ el e2) has type Num”. This is of course the
exact same thing the code says, but with rather less noise.
Terminology: The part above is called the antecedent (that which goes before) and the

part below is called the consequent (that which comes after). Don’t call these the
numerator and denominator!

113

Growing Types: Division, Conditionals

Handling Division

Addition, multiplication, and subtraction are total functions over numbers: they consume two
numbers and produce one. In contrast, division is a partial function: it isn’t defined when the
denominator is zero. Therefore, we need a strategy for handling it. There are several available
strategies:

1. We can declare that division doesn’t return a number but instead something else that
captures its partiality, such as (Optionof Number). This can work just fine. However, it
means every single use of division will need to check whether it obtained a proper
number or not. This can get quite onerous.

2. We can declare that division only consumes non-zero numbers in its second argument.
This is a major change to our type system, because until now we had lumped all numbers
together into a single numeric type. This now affects all callers of division, who must now
prove that they are not calling it on zero as the second argument. This is onerous in a
different way. Observe that the type checker cannot automatically prove that a value is
non-zero without error, because this is not decidable (see Rice’s Theorem).

3. We give it the same type as other binary numeric operations, and declare that the
exceptional case will be handled by an exception or error. This implicitly puts the burden
on the rest of the program, which must be aware of this possibility and handle it.

For more about general strategies for handling partial functions, see

https://dcic-world.org/2022-08-28 /partial-domains.html

Most programming languages have taken the third option above, which seems the most
pragmatic. However, a growing number of languages are exploring the first two options. They
get around Rice’s Theorem in the second case by trying to prove non-zero-ness and, when they
cannot, putting the burden on the programmer. While this creates more effort for the
programmer, it increases the program’s robustness.

Another Perspective on Types

We have already seen how we can think of types as abstractions of values, and type-checking as

running a program over these abstract values. As we’ll soon see, the analogy will break down a
bit.

Another perspective is to think of types as a static discipline: a way of statically making
judgments about programs. In a way, we have already been doing just this: it’s called parsing. A
parser statically (i.e., before the program runs) passes judgment (i.e., decides that some
programs are good and others are bad). Types can be viewed as an extension of this idea.

114

https://en.wikipedia.org/wiki/Rice%27s_theorem
https://dcic-world.org/2022-08-28/partial-domains.html

Aside: In computability theory terms, parsers are usually context-free, whereas types
usually reflect context-sensitive constraints. Computability theory then helps us
understand why we might separate these checks into two separate phases, and in
particular why we might do one before the other. Essentially, the type-checker only
needs to deal with programs that have already passed the parsing, i.e., context-free
check, so it has much less complexity than if it had to do everything. We already saw this:
our previous checker only consumed Exprs, which are produced by the parser.

From Axioms and Rules to Judgments

When we need to apply type rules to a program, we compose them recursively, just as the
type-checker runs. Consider this program:

(+5 (+6 7))

To decide its type, we will use our current rules []. Observe that it does not fit any axiom,
because the program does not match the syntax of a single number or string. Therefore, we have
to use a conditional rule. We have seen only one so far, and fortunately this term does match the
consequent: it requires two terms, and we have two terms, so el is 5 and e2is (+ 6 7).
Therefore, applying this conditional rule, we get:

|- 5 : Num |- (+ 6 7) : Num

|- (+ 5 (+ 6 7)) : Num

So far, so good. Now let’s look at the two terms in the antecedent. The first one now actually
matches to an axiom; therefore, we’ll mark that in green and can stop with that:

|- 5 : Num |- (+ 6 7) : Num

|- (+5 (+ 6 7)) : Num

For the other, we have to apply the same conditional rule again:

|- (+ 5 (+ 6 7)) : Num

These new terms also match the axiom for numbers, so we can mark them also in green:

115

|- (+ 5 (+ 6 7)) : Num

Every part of the tree now terminates in an axiom. We therefore consider this program to have
successfully type-checked. This tree is called a judgment, because it passes judgment on the
initial term: in this case, judging it to have type-checked and to produce a value of type Num.
Observe closely that this is the same pattern of execution we had with the type-checker! The

difference is that we were able to skip the tedious details of passing and returning things, and
instead simply used pattern-matching. This will save us a fair bit of work as we go forward.

Judgments and Errors

Let’s see another example, which will illustrate an important principle:

(+ 5 (+ 6 "hi"))

This proceeds analogously to the previous example. This leaves us with the following attempted
judgment:

|- (+ 5 (+ 6 "hi")) : Num
But now we have a problem: we need to type-check
|- "hi" : Num

but we don’t have a rule that matches. Therefore, we cannot construct a successful tree:

|- (+ 5 (+ 6 "hi")) :

Remember the “if ... and ... then” interpretation. Because we cannot satisfy all the antecedents,
we cannot prove anything about the consequents, leaving the tree incomplete.

116

A type error is simply a failure to construct a judgment. It may not be the most satisfying user
feedback, but our concern here is with a concise way of expressing ideas; going from this to an
implementation is not too hard, and the user interface details can be added to the latter.

This requires some clarification. We only call it a judgment if the tree is “checked off”
completely: i.e., every antecedent is generated using given rules, and all the leaves are actual
axioms. In this example, we are unable to check off the tree: there is no available rule or axiom
that lets us conclude that "hi" is a Num. Therefore, we cannot “judge” the initial expression. This
is a technical meaning of the word judgment, not to be confused with potentially colloquial
interpretations of the term.

Similarly, imagine that we started with this program:

(+5 (- 67))

We would get this far:

- (+5 (- 67)) : Num

Again we would fail, this time because we haven’t provided a (conditional) rule for (- el e2).
Obviously it’s not difficult to define one; we just haven’t done so yet, so our pattern-matcher

would fail.

Exercise: Construct the conditional rule for ++ (string concatenation). Compare it to
the code in the type-checker.

Typing Conditionals

Now we'’re ready to add a rule for if. As we have seen, different languages have different rules
for what can go in the conditional clause. Since the goal of a type-checker is to catch type errors,
it is common for languages with type-checkers to demand that the conditional be a Boolean
(without a truthy/falsy set of Boolean values). Our goal here is not to make a value judgment but
rather to illustrate how we would add a type rule for it.

By now, we can see that we will need a conditional rule (because we want to type-check more
than just constants); following SImPI, and we will need the antecedent to say something about
the sub-expressions. Clearly, we need at least:

117

|- (if CTE) : ..

Okay, what now? What is the type of the entire condi